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Summary

The main research question addressed by this thesis is whether we can combine a crypto-

graphic primitive called homomorphic encryption with a cryptographic primitive called

attribute based encryption. Firstly, let us define both homomorphic encryption and

attribute based encryption.

Homomorphic Encryption (HE) involves the ability to operate on encrypted data

without knowing the secret key. Attribute Based Encryption (ABE) provides fine-

grained access control over data by allowing an entity to encrypt data with attributes

which must be satisfied by a decryptor’s access policy in order for decryption to succeed.

A special case of ABE is identity-based encryption (IBE) where the access policies are

simple equality relations i.e. each access policy is satisfied by a singular attribute.

A natural question is whether we can have both the functionality of ABE and the

functionality of HE in the same cryptographic primitive? In this thesis, attribute based

homomorphic encryption (ABHE) is introduced which combines the functionality of ABE

with the functionality of HE. We say an ABHE scheme is multi-attribute if it supports

evaluation on ciphertexts with different attributes. In contrast, a single-attribute scheme

only supports evaluation on ciphertexts with the same attribute. Therefore, in sum, there

are three facets that describe an ABHE scheme: (1). its supported class of circuits (as

in HE); (2). its supported class of access policies (as in ABE); and (3). whether it is

single-attribute or multi-attribute.

Suppose one were to maximize each of the above facets. This would give us multi-
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attribute attribute-based fully homomorphic encryption (ABFHE) for all polynomial-

time access policies. An important research question then is whether a multi-attribute

ABFHE scheme for all polynomial time access policies can be constructed under rea-

sonable cryptographic assumptions? In this thesis, we answer this question in the affir-

mative; we construct and prove the security of the first multi-attribute ABFHE for all

polynomial-time access policies.

Beyond this feasibility result, we also explore more “concrete” constructions of ABHE

i.e. schemes that are more conducive to practical realization (i.e. are implementable at

the current time). On this front, we begin by tackling a flavor of HE called group ho-

momorphic encryption (GHE) from an attribute-based perspective. We define attribute

based group homomorphic encryption (ABGHE) and give an instance of an ABGHE

scheme. More precisely, this instance is in fact an identity-based scheme that is ho-

momorphic for the XOR operation. We prove the scheme secure under the quadratic

residuosity problem in the random oracle model.

We then turn our attention to the second flavor of HE, namely fully homomorphic

encryption (FHE). Therefore, we explore attribute based fully homomorphic encryp-

tion (ABGHE). Our first result is a compiler to transform any ABHE scheme that can

evaluate “shallow” (i.e. polylog depth) circuits into one that can evaluate circuits of

arbitrary depth, but with a bounded number of inputs N. We also present an identity-

based FHE scheme that can evaluate circuits up to a bounded depth that is specified

in advance of generating the public parameters (this is called leveled FHE in the litera-

ture) . This scheme allows evaluation on ciphertexts with different identities (hence it is

multi-identity”). This scheme can be used to instantiate our previous result to obtain a

multi-identity identity-based FHE scheme that can evaluate circuits of arbitrary depth

but with a bounded number of inputs.
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Notation and Abbreviations

Notation

〈x1, . . . , xn〉 Sequence of items x1, . . . , xn.

~v Vector (always written in boldface)

M Matrix (always written in boldface)

〈~u, ~v〉 Inner (dot) product between vectors ~u and ~v.

[n] The set of elements {1, . . . , n}.

x
$←− D where D is a distribution This notation means that x is sampled according to the distribu-

tion D.

x
$←− S where S is a set This notation means that x is sampled according to the uniform

distribution on S.

supp(f) where f is a function The set of elements from the domain X of f that map to a non-

zero value under f i.e. the set {x ∈ X : f(x) 6= 0}.

y = poly(n) This expression means there exists a fixed polynomial p(x) such

that y = p(n).

y = negl(n) This expression means that y < 1/p(n) for every polynomial p(x).

D1 ≈
C
D2 The distributions D1 and D2 are computationally indistinguish-

able.

D1 ≈
S
D2 The distributions D1 and D2 are statistically indistinguishable.
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Abbreviations

IND-CPA Indistinguishability under a chosen plaintext attack.

FHE Fully Homomorphic Encryption

IBE Identity Based Encryption

ABE Attribute Based Encryption

ABHE Attribute Based Homomorphic Encryption

ABGHE Attribute Based Group Homomorphic Encryption

ABFHE Attribute Based Fully Homomorphic Encryption

IBFHE Identity Based Fully Homomorphic Encryption
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Chapter 1

Introduction

Individuals and organizations often need to outsource computation to a third party,

usually to benefit from the computational resources offered. This has taken place since

at least the 1950’s when jobs were delegated to mainframe computers, remotely accessed

via terminals.

Security and privacy are significant issues when considering outsourcing computation

to a third party. Trusting a third party such as a “cloud” provider with security might

be assessed as high-risk, especially when one considers the fact that the provider is

exposed to the public internet. Chow et al. [59] categorize the security concerns in

“cloud” computing as: (1). traditional security ; (2). availability ; and (3). third-party

data control. These three principal categories can be described as follows: traditional

security encompasses network and server intrusions; availability encompasses uptime,

redundancy, and computational integrity; and third-party data control encompasses the

control and transparency of data held by the cloud provider.

To highlight these concerns, we take a closer look at some examples in each of the

above categories. In regard to network and server intrusions, the cloud provider is

susceptible to common types of attack against software and system vulnerabilities. These

include buffer overflows, buffer over-reads, cross-site scripting (XSS) and SQL injection.
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Vulnerabilities may be found at the virtual machine (VM) level i.e. in the VM monitor

(hypervisor), or they may be found at the platform level i.e. in server software such

as web servers. Vulnerabilities have been found in several different hypervisors [59]. A

vulnerability found in the hypervisor VMWare in 2009 allowed an attacker to escape the

guest machine and take control of the host [127]. More common are exploits that arise at

the platform level. A case-in-point is the “Heartbleed” [1] buffer over-read vulnerability

which was disclosed in April 2014. Heartbleed is a serious security bug in the OpenSSL

library, which allows an attacker to expose up to 64 KB of the server’s memory (from the

heap). OpenSSL is a widely-deployed implementation of the Transport Layer Security

(TLS) protocol that is used by many websites to protect the confidentiality and integrity

of their users’ traffic. It is estimated that approximately 17% of web servers that use

TLS were affected by Heartbleed [3]. This naturally includes a large number of cloud

services. An attacker can easily exploit the vulnerability to expose sensitive information

such as passwords, session cookies and credit card information, and most critically in

some cases, the private key associated with the server’s certificate. The attacker could

accomplish this without a log entry being generated on the server.

It is not fully known whether Heartbleed was known to attackers prior to its public

disclosure, although suspicious packets resembling the attack have been found in network

logs [5]. If this were indeed the case, then Heartbleed would be an example of a zero-

day vulnerability (one that is known to attackers but not the public at large). Bilge

and Dumitras [31] found 18 zero-day vulnerabilities in data they collected from over 11

million hosts using the worldwide intelligence network environment (WINE); the data

was analyzed in retrospect from 2008 to 2011 to determine whether vulnerabilities were

used by attackers prior to their official disclosure. The zero-day vulnerabilities they

found remained undetected for between 19 days to 30 months, and on average, 312 days.

In light of these threats, an organization has to ensure a cloud provider adheres to robust

security practices to reduce the risk of attack to their sensitive data.

Availability is another important issue when delegating computation. The robustness

2



of the provider against denial of service attacks is important to ensure the service remains

reachable. Redundancy is essential to protect against data loss and system outages. Also

in this category is assurance of computational integrity; in other words, the guarantee

that the correct computation was performed by the provider.

Third-party control of data is another factor that weighs heavily on an organization’s

decision to outsource. The organization must assess the integrity of the cloud provider;

it must assess its relationship with domestic and international governments such as its

handling of subpoenas; it must assess whether the provider subcontracts its services [59];

and it must assess the threat of insider attacks [123]. The disclosures in 2013 of mass

surveillance by intelligence agencies such as the NSA and GCHQ [2] brings many of these

concerns sharply into focus. As part of this surveillance, intelligence agencies gathered

private customer data from cloud providers either with their co-operation or by some

other means, such as via infiltration, eavesdropping or targeted intrusion. These threats

to privacy coupled with exposure to a wide array of attack vectors undoubtedly dissuade

many from outsourcing their computation.

As we have seen, there are many significant issues surrounding data privacy when

one considers outsourcing computation to any third party. An individual or organization

that sends potentially sensitive data to a remote facility loses some degree of control over

that data. They have to trust that the third party is honest, provides state-of-the-art

security measures against external intruders, and safeguards against insider attacks (e.g:

malicious employees). Furthermore, they have to ensure that there are no legal or

regulatory barriers preventing the data being held by the third party.

For these reasons, supplying the data in encrypted form is preferable, since it protects

confidentiality in the face of eavesdropping and/or intrusion, and potentially addresses

data protection requirements. However, if the data is encrypted, in order for the third

party to carry out the desired computation on this data, it needs to be able to operate on

encrypted data without being able to decrypt it. This notion is known as homomorphic

encryption. In brief, homomorphic encryption allows an operation to be performed on

3



one or more ciphertexts such that a corresponding meaningful operation is performed

on the underlying plaintexts, and this can be done without the secret key. Our use

of the term homomorphic encryption without further qualification specifically refers to

the public-key setting. More precisely, in this setting, an encryptor uses a recipient’s

public key to encrypt a message, which the recipient can then decrypt with her corre-

sponding private key. Ciphertexts created with the same public key can be operated on

homomorphically.

If encrypted data is to be stored by a third party so that homomorphic computation

can be carried out, then one would expect that users within the delegator’s organization

be allowed to query and fetch certain portions of it - both ciphertexts corresponding to

inputs and ciphertexts corresponding to outputs (i.e. the results of a computation). In

the following discussion our mention of “organization” refers to the delegator’s organi-

zation.

To gain the full benefits of the wider accessibility of information from outside the

organization, it is desirable to grant access to this data in a non-interactive manner; that

is, without having to mediate access to it through a server within the organization. To

achieve this functionality, cryptographic access control is required. Cryptographic access

control means that access is granted to a piece of data non-interactively through a cryp-

tographic process, as opposed to being enforced by a centralized system, interactively,

as in traditional access control.

Attribute Based Encryption (ABE) is a cryptographic primitive that realizes the

notion of cryptographic access control. ABE owes its roots to a simpler primitive called

Identity Based Encryption (IBE), proposed in 1985 by Shamir [167] and first realized in

2001 by Boneh and Franklin [38] and Cocks [66]. IBE is centered around the notion that

a user’s public key can be efficiently derived from an identity string and a system-wide

master public key. Another name for the master public key in the literature is the public

parameters; we adopt this term in this thesis. The identity string may be a person’s

email address, IP address or staff number, depending on the application. The public
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parameters along with a secret trapdoor (master secret key) are generated by a trusted

third party referred to as the Trusted Authority (TA). The primary purpose of the TA

is to issue a secret key to a user that corresponds to her identity string (we abbreviate

this to identity) over a secure channel. The means by which the users authenticate to

the TA or establish a secure channel are outside the scope of IBE. The TA uses the

master secret key to derive the secret keys for identities. It is assumed that all parties

have a priori access to the public parameters. For instance, the public parameters may

be hard-coded in the software used by the participants, or made available on a public

website.

ABE was proposed in 2005 by Sahai and Waters [164]. ABE can be viewed as a

generalization of IBE. In ABE, the TA generates secret keys instead for access poli-

cies (an access policy prescribes the types of data a user is authorized to access). An

encryptor Alice can use the public parameters to encrypt data, and embed within the

ciphertext a descriptor of her choice that suitably describes her data. The descriptor

is referred to as an attribute. We caution the reader that although the term attribute

is used here in its singular form, it may in fact incorporate a collection of descriptive

elements (which we call “subattributes”). To illustrate this, an example of an attribute

is {“CS”, “CRYPTO”}; it consists of the subattributes “CS” and “CRYPTO”. Let us

assume that this is the attribute chosen by Alice. Suppose the TA has issued a user

Bob a secret key for his access policy. Keeping with the above example, suppose his

access policy “accepts” an attribute if it contains both the subattributes “CS” and

“CRYPTO”. It follows that Alice’s chosen attribute satisfies Bob’s access policy. As

such, Bob can use his secret key to decrypt Alice’s ciphertext. Notice that IBE is a

special case of ABE. One way of looking at an IBE scheme is that each attribute corre-

sponds to a unique identity string such as an email address or phone number. In IBE,

there is a one-to-one mapping between attributes and access policies, so Alice is given

a secret key for a policy that is singularly satisfied by her identity string (e.g: email

address). On the other hand, ABE, supporting a richer class of policies, means that a
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user’s access policy might be satisfied by many attributes. Conversely, an attribute may

satisfy many policies. Formally, an access policy is a predicate over attributes.

To grant a user access to data her credentials allow her access to, the TA (which is

hosted by the organization) authenticates the user, determines her access policy (from

her credentials), generates a corresponding secret key, and issues the secret key to the

user. This is an interactive process that need only take place infrequently∗. Issued with a

secret key, a user can non-interactively decrypt an unbounded number of ciphertexts that

satisfy her policy. ABE delivers fine-grained access control with minimal interaction, and

its use has been explored in many applications including distributed file systems [159],

social networks [159] and management of personal health records [14,119,143].

Suppose an organization chooses to avail of ABE for access control. Can the organi-

zation still use it in conjunction with privacy-preserving outsourced computation? An

issue here is that one “type” of encryption is needed for privacy-preserving computation

(namely, homomorphic encryption) and another “type” of encryption is needed for ac-

cess control (namely, attribute-based encryption (ABE)). How can one obtain the “best

of both worlds”? Thus a natural question is whether these two types can be reconciled.

It turns out that homomorphic encryption in the attribute-based setting is nontrivial

to achieve. This thesis is focused on characterizing and realizing attribute-based homo-

morphic encryption. In the next section, we give an informal overview of this notion,

and discuss the motivations for studying it with the help of application scenarios.

∗The frequency is determined by measures to address revocation; i.e. making the access policies time-

limited. There is a trade-off between the number of secret key updates and the window of unauthorized

exposure in the event of a key compromise or access revocation.
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1.1 Motivation

1.1.1 Overview of the Problem Domain

A coarse-grained view of homomorphic encryption (HE) is that it comes in two flavors.

One flavor allows a single operation such as addition or multiplication to be evaluated on

encrypted data; this is referred to as partial homomorphic encryption. A more powerful

flavor is fully homomorphic encryption (FHE) that allows arbitrary computation to be

performed on encrypted data. FHE was first constructed in 2009 in a breakthrough work

by Gentry [93]. We discuss HE in more detail later in this chapter in Section 1.3.

In standard (i.e. public-key) HE, there is only a single target recipient. This may be

ill-suited to the needs of a large organization such as a university. Consider a scenario

where university staff have restricted access to data based on their department and

position. The university has opted to avail of the computational resources of a third

party such as a cloud provider for the purpose of delegating sizable computational tasks.

We call this third party the evaluator. Each sender of data acts independently since

they are potentially unaware of each other’s participation.

To comply with the organization’s privacy regulations, each sender must encrypt her

data with an appropriate attribute that describes the data in question, and which is

used to ensure only staff members with qualifying credentials can access the data (or

any derivative thereof). Recall that an attribute may contain subattributes. We assume

an appropriate attribute can be feasibly determined from the data source and context.

The computation to be performed, and the inputs to be used, may be decided at a

later stage by a subset of the senders, or indeed another party entirely, including the

evaluator itself.

The results of the computation are then stored by the evaluator so that they can

be queried by staff members. The results should only be decryptable by a given staff

member if her access policy is satisfied by the attributes associated with all the inputs

used.
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One approach to satisfy these requirements is to use public-key HE together with a

trusted access control system (ACS), which holds the private key for the HE scheme.

The role of the ACS is to grant users (i.e. staff members in the above scenario) access

to a plaintext after verifying that their access policy gives them permission to recover

the plaintext † Access control of this form facilitates expressive policies.

This approach however suffers from a number of drawbacks:

• All parties interested in a result are required to contact the ACS, which must

remain online and exhibit high availability in order to guarantee satisfactory re-

sponsiveness. The ACS may therefore act as a bottleneck, especially under high

load scenarios.

• Adhering to the principle of least privilege, the organization may wish to limit the

capabilities of the ACS. In particular, it may have reservations about the ACS

being compromised, and potentially providing an attacker access to all results

returned from the cloud.

• Remote users with valid credentials cannot directly query the cloud for data and

decrypt non-interactively. All requests must be routed via the organization’s ACS.

Another approach is to use ABE in conjunction with HE. In more detail, a sender,

Alice, generates a fresh public key and private key (pk, sk) for the HE scheme. Then

she encrypts her data using the HE scheme with the public key pk; call this ciphertext

cHE. She then encrypts sk using the ABE scheme with her chosen attribute; call this

ciphertext cABE. Finally she sends the ciphertext (cHE, cABE). This solution is adequate if

there is only one sender who contributes data to a homomorphic computation. Another

user, Bob, who follows the same steps as Alice will generate a HE ciphertext with a

†A non-interactive zero-knowledge (NIZK) proof system [32] is needed so that an encryptor can

bind an attribute to a ciphertext, and so the evaluator can bind to the output ciphertext the attributes

associated with the input ciphertexts. This is needed because otherwise a corrupt staff member could

change the attribute associated with a ciphertext to one that satisfied his access policy.
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different public key. As such his ciphertext cannot be evaluated together with Alice’s

ciphertext. Since our goal is to support evaluation with data contributed by multiple

independent senders, who may not even be aware of each other, this approach does not

offer a solution.

This motivates an alternative solution where a homomorphic encryption scheme na-

tively offers access control. Such a scheme accommodates multiple independent senders

without requiring any interaction. Another salient feature is that a sender and an eval-

uator can non-interactively perform their tasks with the public parameters alone. Ad-

ditionally, a decryptor need only interact with the TA once to obtain a secret key for a

particular access policy. He can thereafter decrypt an unbounded number of ciphertexts

whose attributes satisfy this access policy, without further interaction. Such a scheme

is an instance of attribute based homomorphic encryption (ABHE), which comes in

two primary flavors - attribute based group homomorphic encryption (ABGHE) and

attribute based fully homomorphic encryption (ABFHE). Like their public-key counter-

parts, ABGHE informally means that a single (group) operation can be performed on

the data, whereas ABFHE means that any computation can be performed.

We say an ABHE scheme is multi-attribute if it allows evaluation on ciphertexts

with different attributes. In contrast, a single-attribute scheme only allows evaluation

on ciphertexts with the same attribute. ABHE is discussed in more detail in Section 1.3.

Remark One of the assumptions we make is that the evaluator is semi-honest. This

means that it is assumed to correctly follow the protocol but it may attempt to learn as

much information as possible about the data that is encrypted by examining all protocol

communication - this adversarial model is also known as “honest-but-curious”. This ad-

versarial model can be justified if the stakes are too high for the evaluator to be caught

cheating [27] by being malicious. A malicious adversary can act arbitrarily i.e. engage

in an active attack by deviating from the protocol. So in our case, it might evaluate a

different function to the one that is desired, or manipulate the inputs/outputs. Verifying

9



that the evaluator performs the desired computation exactly as prescribed by the proto-

col is beyond the scope of this thesis, although there has been much research along this

line, most particularly is the primitive Verifiable Computing [89] and protocols based on

succinct non-interactive arguments of knowledge (SNARKs) [28]. Such approaches can

be used in tandem with our schemes to achieve verifiability.

1.2 Motivating Scenarios

In order to facilitate ready access to, and build understanding of, the concepts, techniques

and contributions within this thesis, a selection of use-case scenarios will be developed

and extended throughout the work.

1.2.0.1 Computations on Medical Records

Consider a hospital H that avails of the computational facilities of a cloud provider

E. Data protection legislation requires the hospital encrypt all sensitive data stored on

third party servers. The hospital deploys attribute-based encryption to manage access

to potentially sensitive data. Therefore it manages a “trusted authority” that issues

secret keys for access policies to staff in accordance with their roles / credentials. Be-

yond deploying standard attribute-based encryption, H elects to adopt multi-attribute

ABFHE because this allows computation to be performed on encrypted data stored at

a third party facility such as E.

Parties such as outside researchers, medical practitioners and internal staff in H are

able to encrypt sensitive data with appropriate attributes in order to limit access to

authorized staff. For example, a doctor in the cardiology unit might encrypt medical

data with the attribute “CARDIOLOGY” and a researcher in the maternity unit might

encrypt his data with the attribute “MATERNITY”. Suppose both encrypted data sets

are sent to the cloud provider E to carry out computational processing on the data

(while remaining encrypted). A multi-attribute ABFHE allows E to perform the desired
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Fig. 1.1: Diagram of Medical Records Scenario

computation homomorphically on both data sets together irrespective of the fact that

the data sets were encrypted with different attributes.

Suppose a doctor in the cardiology unit, which we call Sender 1, encrypts her data set

of patient records m1 with attribute “CARDIOLOGY”; we call her ciphertext(s) E(m1).

Likewise a researcher in the maternity, which we call Sender 2, encrypts his data m2

with attribute “MATERNITY”; we call his ciphertext(s) E(m2). Furthermore, suppose

a research collaborator from outside the hospital, which we call Sender 3, sends encrypted

cardiology data to E i.e. she encrypts her data m3 under attribute “CARDIOLOGY”;

we call her ciphertext(s) E(m3). Figure 1.1 illustrates this scenario.

Let C be the desired computation that needs to be performed on the data sets m1, m2

and m3. For example: C involves calculation of the number of heart attacks experienced

by mothers within 3 months of birth. Let m′ = C(m1,m2,m3) denote the result of this

computation. The goal in question is to offload this computation C to the evaluator E

11



while retaining input and output privacy of the data sets. Figure 1.1 shows that the

evaluator obtains the result m′ in encrypted form, as desired. Furthermore, the figure

shows that an entity, which we call the “receiver”, obtains the result in encrypted form,

denoted by E(m′). The figure also shows that E(m′) is associated with both attributes

“CARDIOLOGY” and “MATERNITY”, as expected. The receiver’s policy f , for which

a secret key is obtained from the trusted authority, is satisfied by both attributes. An

example of such an f is as follows:

f(x) , x = “MATERNITY” OR x = “CARDIOLOGY”.

It follows that the receiver is able to decrypt the result of the computation. This matches

our intuition because her policy permits her access to both the data sets used in the

computation. However, a member of staff whose access policy permits access to either

“MATERNITY” or “CARDIOLOGY” (but not both) should not be able to decrypt the

result.

1.2.0.2 Aggregation in Wireless Sensor Networks

There have been numerous approaches in recent years to apply IBE to Wireless Sensor

Networks (WSNs). Notable contributions in this regard include [134,150,151,172]. One

prevalent paradigm of a WSN involves a source node that collects sensor measurements

in some environment, and forwards these measurements along an established route to a

base station. Security becomes an issue in a hostile environment where malicious nodes

may intercept the transmitted data. Since the autonomous sensor nodes are heavily

resource-constrained, it is imperative to conserve energy where possible to prolong the

lifetime and effectiveness of the network.

IBE is a natural choice for this application because nodes deployed in the field neither

have to store sensitive secret keys (for symmetric encryption) nor expensively fetch, store

and validate public keys for particular base stations (traditional PKI). Instead, since all

nodes are identified with a unique network address, it is possible to establish well-defined
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identity strings. In addition, all nodes can be pre-loaded with the public parameters of

the IBE scheme prior to deployment. Accordingly, in order for a node to transmit to a

particular base station B with address aB, it can derive the public key for B from aB

and the public parameters.

The most costly activity for nodes in a WSN is radio usage. Thus, it is essential

to minimize the number of transmissions necessary to accomplish the network’s goals.

As such, a widely-used optimization strategy is aggregation of data along the path

from the source to the sink (the base station). There may be a multitude of sources

transmitting independent data along a particular path towards a sink. An intermediate

node on the path acting as a relay, or router, may coalesce a collection of data it receives

from multiple sources by performing some applicable aggregation function. An example

would be to take the mean of the incoming measurements, and forward this mean to

the base station. But how can this be accomplished if the data emerging from the

sources is encrypted with the identity (i.e. network address in this case) of the ultimate

destination, namely that of a base station? A solution to this problem is identity-

based homomorphic encryption. To calculate the mean, an additive homomorphism is

sufficient. If the aggregation function is more complex, then we need a scheme that

can homomorphically evaluate more complex functions. However since the nodes are

heavily constrained, in practice, one would expect the aggregation function to not be

very complex; hence an additive homomorphism might well suffice.

While identity-based homomorphic encryption is advantageous to WSNs, even greater

flexibility is afforded in terms of more fine-grained access control if attribute-based ho-

momorphic encryption (ABHE) is employed. Consider the following scenario. A WSN

is deployed in an area in which sensors measure moisture and temperature. The area

is divided up into N regions, labeled R1, . . . , RN . Each of these regions contains one

or more base stations. Suppose it is sufficient for the base stations to determine the

aggregate moisture and/or aggregate temperature measured in their region. Note that

the mean can be easily derived from these quantities if needed, since we assume the total
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number of measurements is also reported. Furthermore, we assume sensor nodes have

the capability (such as via GPS) to determine which region they are in. To cut down

on communication, aggregator nodes are employed to aggregate reported measurements

that are sent by the sensor nodes as they are transmitted en-route to a base station.

To minimize data exposure in the presence of adversarial nodes, an ABHE scheme is

deployed within the WSN. The ABHE scheme supports an additive homomorphism to

satisfy the needs of aggregation as described. Every node, prior to its deployment, is

pre-loaded with the public parameters of the scheme. The WSN administrator operates

the TA offline, unconnected to the WSN.

A plaintext in the system is an integer from the set P , {0, . . . ,M}; sensor readings

are assumed to take on values in the range 0, . . . ,M for some M . An attribute in the

system is of the form (type, region) where type ∈ {MOISTURE,TEMPERATURE} and

region ∈ {R1, . . . , RN}. Let A be the set of attributes. Let F be a class of access policies

modeled as predicates (i.e. Boolean-valued functions), where every policy f : A →

{0, 1} ∈ F maps an attribute to {0, 1} (denoting false and true respectively).

Adhering to the principle of least privilege, a base station B in region R1, whose

purpose is to monitor moisture content in that region, is issued a secret key for the

following policy, denoted f :

f(a := (type, region)) , (type = MOISTURE) ∧ (region = R1).

Another base station B′ whose purpose is to monitor both moisture and temperature in

the regions R1 and R2 is issued a secret key for the following policy, denoted f ′:

f ′(a := (type, region)) , (type = MOISTURE ∨ type = TEMPERATURE)

∧ (region = R1 ∨ region = R2).

Suppose an aggregator node near B′ receives encrypted readings from two different sen-

sor nodes. The first reading originated in R1 and has the attribute a1 := (type :=

MOISTURE, region := R1) while the second reading originated in R2 and has the at-

tribute a2 := (type := MOISTURE, region := R2). If the ABHE scheme is multi-attribute,
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then the aggregator can add the two encrypted readings homomorphically irrespective

of the fact that they have different attributes. Suppose it subsequently forwards the

encrypted result to B′. Intuitively, B′ should be able to recover the plaintext because

its policy f ′ authorizes both attributes; that is, we have f ′(a1) = f ′(a2) = 1. In con-

trast, if the base station B gets hold of the ciphertext, it should not be able to recover

the plaintext because its policy f is satisfied by only one of the attributes, namely a1.

On the other hand, if the scheme is single-attribute, then homomorphic addition is only

supported on ciphertexts with the same attribute. So in the context of our scenario,

this would mean that readings from different regions cannot be aggregated together.

This limitation is probably more pronounced in contexts with more extensive and varied

attribute families.

1.2.0.3 Participatory Sensing

In participatory sensing, users with personal mobile devices, such as phones that are

equipped with sensors, share data acquired from these sensors with a network. We refer

to these entities as mobile nodes. Other entities, called queriers, subscribe to receive

certain types of data.

De Cristofaro and Soriente [71, 72, 76] presented a model for participatory sens-

ing with privacy-enhanced capabilities using provably-secure cryptographic primitives.

Their model, called PEPSI, is described as follows. In PEPSI, the main entities are

(1). mobile nodes that sense and produce data such as noise level, temperature etc;

(2). queriers that consume data that is sensed - such nodes subscribe to receive certain

types of data matching particular descriptions; and (3). a service provider (SP) that

acts as an intermediate between mobile nodes and queriers, passing data received from

the former on to the latter in accordance with their subscriptions. In addition, PEPSI

involves a trusted authority, called a registration authority (RA) whose purpose is node

registration - authenticating mobile nodes and queriers and granting them appropriate

credentials.
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Günther et al. [114] improved the security of PEPSI by making it resistant to collusion

between mobile nodes and queriers. Their modified model, called PEPSIco, achieves data

privacy, query privacy and node unlinkability (not being able to link two reports sent

by the same mobile node). We refer to [114] for more detailed discussion on PEPSI and

PEPSIco. An interesting feature that Günther et al. incorporate in PEPSIco is support

for data aggregation, which they argue is useful to reduce the amount of information

to be sent to queriers, cutting down on communication cost. Günther et al. give a

realization of PEPSIco with data aggregation based on additively homomorphic IBE.

This highlights the utility of homomorphic IBE - the more homomorphic capacity a

scheme has, the more complex aggregation can be performed, thus saving on bandwidth

in a participatory sensing context. In Chapter 4, we discuss additively homomorphic

IBE in more detail.

The participatory-sensing schemes in [72,76] and [114] rely on an IBE scheme E . As

shown in [114], data aggregation can be added to the system if E is homomorphic. So

this provides us with a practical application of identity-based homomorphic encryption.

Günther et al. [114] only consider an additive homomorphism, but clearly, if E were

homomorphic for more complex functions, then more complex aggregation could be

performed. While outside the scope of this thesis, an interesting goal for future work is to

improve the capabilities of the PEPSIco model by considering attribute-based encryption

instead. In such a context, one would require attribute-based homomorphic encryption

to do data aggregation as before.

1.2.0.4 Personal Data Management

Another way of looking at attribute-based cryptography is by considering an individual

as the trusted authority. Therefore, the public parameters correspond to a user’s public

key. Alice can grant access privileges to various parties by asserting their credentials

and issuing a secret key for an appropriate access policy. At the present time, data

is frequently associated with “tags” that serve to describe data. Popular sites such as
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the micro-blogging site Twitter [6] encourage users to mark their posts with descriptive

tags (known as “hashtags” in the context of Twitter). The applicability of ABE in this

context has been investigated [73].

Suppose Alice generates public parameters PPA along with master secret key MSKA

for an attribute-based homomorphic encryption (ABHE) scheme E . She publishes PPA

as her public key. Suppose Alice works as a journalist with the newspaper “P” and

sometimes her work overlaps with her other interests. Alice primarily uses two inde-

pendent “cloud-based” sites including a “social networking” site SN and a “professional

networking” site PN. An attribute in the ABHE scheme E is modelled as a set A of

subattributes. She issues SN with a secret key for the following policy:

fSN(A) , ((social ∈ A) ∨ (writing ∈ A)) ∧ (“P” /∈ A).

The policy fSN allows SN access to messages tagged with “social” or messages tagged

with “writing” provided the subattribute “P” is not present.

Similarly Alice grants PN a policy that is inversely related to fSN i.e. it is defined as

fPN(A) , ((“P” ∈ A) ∨ (writing ∈ A)) ∧ (social /∈ A).

Suppose Bob posts an encrypted message to SN, whose plaintext is denoted by MB,

tagged with both writing and “P”. Furthermore, the message is encrypted with the at-

tribute AB := {”writing”, ”P”}. Carol also posts an encrypted message, whose plaintext

is denoted byMC , to SN that is encrypted under the attributeAC := {”writing”, ”music”}.

One of the facilities provided by SN is the capability to calculate the statistical closeness

of the two messages. Let us call this function R. Alice runs a thin client with limited

computing power and would like to obtain the value R(MB,MC). Note that SN cannot

decrypt either Bob or Carol’s ciphertext, but it can perform the computation on both

homomorphically, and return the encrypted result to Alice. Observe that this can be

achieved if E has the homomorphic capacity to evaluate R. Furthermore, E must be

multi-attribute i.e it must support evaluation on distinct attributes. A decryptor must
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have an access policy that is satisfied by both AB and AC . An example of such an access

policy is the following:

fT (A) , (writing ∈ A) ∨ (music ∈ A).

Imagine that Alice entrusts a third party T with any content tagged with writing or

tagged with music. For example, T might be a device within Alice’s personal area

network such as a laptop. Alice equips T with a secret key for fT . As a result, T

can decrypt Bob’s ciphertext, Carol’s ciphertext and the result of the homomorphic

computation of R on both ciphertexts.

As the scenario above illustrates, ABHE enables privacy-preserving outsourcing of

computation in addition to the fine-grained access control offered by ABE. Alice, who

is the TA in this scenario, chooses what types of data various services get access to.

As we have seen, even if a service cannot decrypt encrypted data, it can still act on it

(homomorphically) and return the result (in encrypted form).

1.3 Research Question and Contributions

Before examining attribute-based homomorphic encryption, we need to say a little more

about what constitutes a homomorphic encryption (HE) scheme and what constitutes

an attribute based encryption (ABE) scheme. Our intention is to keep the discussion

informal for the moment; we will elaborate later on the precise definitions of these

primitives and their related security notions.

A HE scheme can perform computation over its ciphertexts. The generalized defi-

nition of HE given by Gentry [92] uses the circuit‡ model of computation to represent

such computations. Furthermore Gentry’s definition requires compact evaluation of a

circuit over the ciphertexts; that is, the size of the resulting ciphertext is independent

‡A circuit with n inputs over some domain P is a directed acyclic graph in which every node is either

one of the n input values, or an operation (known as a gate) from some finite set of gates, each of which

maps a number of elements of P to another element of P.
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of the size of the circuit (i.e. the number of gates in the circuit). We distinguish HE

schemes based on the class of circuits they support. Two primary subclasses of HE are

group homomorphic encryption (GHE) and fully homomorphic encryption (FHE). The

former allows a group operation such as modular addition or modular multiplication

to be compactly evaluated and this operation can be applied an unbounded number of

times. The algebraic structure of a group gives rise to some interesting properties, and

as such, GHE is often used as a building block in protocols. Furthermore, there are

applications where a single operation such as addition or XOR is sufficient.

On the other hand, FHE facilitates arbitrary computation on the ciphertexts i.e.

any computable function can be compactly evaluated homomorphically. In other words,

FHE supports a class of circuits with a universal set of gates (such as {AND,XOR} in

the Boolean case), which is known to be Turing-equivalent. The idea of FHE was first

proposed in 1978 by Rivest, Adleman and Dertouzos [162]. Considered the “holy grail”

of cryptography [140,173], many in the cryptography research community believed it to

be impossible [140]. In 2009, Gentry [93] presented the first FHE scheme, triggering a

burst of research into the topic.

Where the “power” of a HE scheme is given by the complexity of its supported class of

circuits, the “power” of an ABE scheme is given by the complexity of its supported class

of access policies. There has been much research into achieving ABE with expressive

access policies. The simplest meaningful class of access policies corresponds to equality

checking; that is, for every attribute a, there is an access policy fa that is satisfied by a

and only a. This corresponds to the special case of IBE. When pursuing research goals

in the attribute-based setting, especially feasibility results, the special case of IBE is

often the first “port of call” because it represents the simplest meaningful class of access

policies.

An important question about HE in the attribute-based setting is whether there

is support for homomorphic evaluation over ciphertexts with different attributes. An

evaluation may involve composition with different attributes; we term the number of
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such attributes the degree of composition. We say an ABHE scheme is multi-attribute if

it allows evaluation on ciphertexts with different attributes. A parameter representing

the number of distinct attributes (i.e. degree of composition) to tolerate is specified in

advance of generating the public parameters. In contrast, a single-attribute scheme only

allows evaluation on ciphertexts with the same attribute; in other words, the degree of

composition is 1. Putting all the pieces together, we can characterize attribute-based

homomorphic encryption (ABHE) by three principal facets: (1). class of circuits; (2).

class of access policies; and (3). composition (i.e. single-attribute vs. multi-attribute).

One of the fundamental results of this thesis is the following:

• (Informal) Under reasonable cryptographic assumptions, there exists a secure multi-

attribute Attribute-Based Fully Homomorphic Encryption (ABFHE) scheme sup-

porting all polynomial-time access policies.

This serves as a feasibility result. Furthermore, our proof is constructive - we give a

construction of both a single-attribute and multi-attribute ABFHE. This is a surprising

result because the techniques used to achieve FHE in the public-key setting appeared

to be incompatible with the attribute-based setting. It also solves an open problem first

mentioned by Naccache at his talk at CHES/Crypto 2010 [146], namely “identity-based

fully homomorphic encryption”, which follows as a corollary of our result. However, our

constructions underlying this feasibility result are far from practical, and rely on the

machinery of indistinguishability obfuscation. For the moment it is sufficient for the

reader to understand that indistinguishability obfuscation is a cryptographic primitive

for which candidate constructions [87,96,155] of have been recently proposed, but which

is computationally expensive. In particular, its use in our construction is highly compu-

tationally expensive. This renders our feasibility results impractical at the present time.

This stimulates inquiry into more “concrete” and efficient constructions, and it prompts

some natural research questions, which we will now elaborate on.

For many applications, the full capabilities of multi-attribute ABFHE are not needed.
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In terms of functionality, relaxations can be made on all three facets above: supported

circuits, supported access policies and supported composition. Can we achieve more effi-

cient constructions by making one or more such relaxations? To put this into perspective,

let us revisit the primary subclasses of HE, namely GHE and FHE.

GHE has been applied in many applications (see Section 2.1.1.1, Section 2.3.0.1 and

the surveys [83, 173]). However, GHE has not been explored in the attribute-based

setting, to the best of our knowledge. So our first avenue is to investigate attribute

based group homomorphic encryption (ABGHE). Additive (group) homomorphisms are

particularly useful for real-world applications. However there are no known attribute-

based additively§ homomorphic schemes. One of the aims of this thesis is to formu-

late the notion of attribute-based group homomorphic encryption (ABGHE) and con-

struct an attribute-based additively homomorphic scheme with expressive access policies.

We present a formal syntax for ABGHE and succeed in constructing an identity-based

additively-homomorphic scheme for finite modular groups of small order m. Specifically

m is required to be polynomially sized (in the security parameter) since the ciphertext

size grows with m. The special case of m = 2 gives an XOR homomorphism, which is

valuable for many applications (see Section 2.3.0.1). Achieving an additive homomor-

phism for small m with more compact ciphertexts remains an open problem as does

achieving an additively homomorphic scheme for large m (i.e. superpolynomial) as we

have in the public-key setting [154]. Furthermore, our result is limited to the identity-

based case; it is open to construct such a scheme for more complex access policies.

Now let us refocus our attention on FHE, and we ask, can we construct more efficient

attribute-based FHE (ABFHE) schemes than our feasibility result? Recall that the latter

relied on the computationally expensive machinery of indistinguishability obfuscation,

but as noted above, this was found to be the only technique thus far that can overcome

§We mean “additively homomorphic” in the “classical” sense of a group homomorphic scheme, which

allows an unbounded number of additions. This precludes schemes that allow only a limited number of

additions.
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the technical obstacles in the way of realizing “pure” ABFHE. By “pure” we mean that

all circuits can be evaluated. This qualifier stems from the existence of an important

relaxation of FHE proposed by Gentry [93] called leveled FHE. Leveled FHE supports

evaluation of circuits of depth at most L, where L is a parameter that is specified in

advance of generating the public parameters of the scheme. This is sufficient for many

applications because if one knows the maximum depth of circuits that require evaluation,

the public parameters can be generated to accommodate this. At Crypto 2013, Gentry,

Sahai and Waters (GSW) presented an identity-based and an attribute-based leveled

FHE scheme. Their attribute-based construction supports general-purpose access poli-

cies, which are represented as Boolean circuits. The GSW schemes are also notable

because their security is based on the Learning with Errors (LWE) problem, a prob-

lem introduced by Regev [161] that has received considerable attention in cryptography

due to a known worst-case reduction to a hard lattice problem. However, a limitation of

the GSW identity-based and attribute-based schemes is that they are single-identity and

single-attribute respectively. Therefore, an enticing goal is to construct a multi-attribute

leveled ABFHE from LWE. In this thesis, we move a step closer to this target by con-

structing a multi-identity leveled IBFHE (i.e. a special case of multi-attribute leveled

ABFHE with a simple class of access policies). We also highlight difficulties extending

our result to multi-attribute ABFHE with more complex access policies.

Another contribution of this thesis is as follows. Suppose we have a scheme that can

evaluate “shallow” circuits. More precisely, suppose this scheme can evaluate circuits

of polylogarithmic depth in some parameter N . Then we present a construction, which

uses the aforementioned scheme, that can evaluate circuits with at most N inputs, but

of unbounded depth. If N is large, then one would expect our construction to meet all

practical expectations because the number of inputs needed would not not typically (if

at all) exceed N . This means we can shift our goal to finding schemes that can evaluate

“shallow” circuits, which is an easier task. Leveled ABFHE meets this goal. As we

have seen, we give a construction of multi-identity leveled IBFHE, which can be used to
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instantiate this result.

The main contributions of this thesis are summarized as follows. The first three

contributions are categorized as “concrete” constructions; in other words, they are more

conducive to practical realizations. The final contribution is our aforementioned feasi-

bility result, which at the present time is highly impractical.

• Additively Homomorphic Identity Based Encryption scheme for modular groups

of small order.

• Black-box construction of ABFHE with bounded arity (number of inputs) from a

leveled ABFHE scheme.

• Multi-Identity Leveled IBFHE.

• Feasibility result: Single-Attribute and Multi-Attribute ABFHE for all polynomial-

time access policies.

1.4 Roadmap

In Chapter 2, the state of the art in homomorphic encryption, attribute based encryption

and their intersection is investigated.

In Chapter 3, we formally define attribute based homomorphic encryption and es-

tablish the security definitions used throughout the thesis.

In Chapter 4, we explore attribute based group homomorphic encryption, and present

a construction of an additively homomorphic IBE scheme.

In Chapter 5, our attention turns to attribute based fully homomorphic encryption

(ABFHE). In the chapter, a black-box construction is given of an ABFHE scheme that

can evaluate circuits with a bounded number of inputs.

In Chapter 6, we present a multi-identity leveled identity-based fully homomorphic

encryption (IBFHE) scheme. While being important in its own right for use as a stan-

dalone construction, it also can be used to instantiate the result in the previous chapter.
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In Chapter 7, we present feasibility results of single-attribute and multi-attribute

ABFHE for all polynomial-time access policies, which completes the contributions of

this thesis.

Finally in Chapter 8, we present the conclusions of our work in addition to future

work.
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Chapter 2

State of the Art

As shown in Figure 2.1, this chapter presents the state of the art in homomorphic

encryption, identity/attribute based encryption and finally, the intersection between the

two areas. We start with homomorphic encryption, then discuss identity and attribute

based encryption, and conclude with a discussion of the overlap between these areas

with a focus on where the contributions of this thesis fit in.

Remark Another work that considers access control in outsourced computation is by

Alderman et al. [16]. Their work allows public verification and supports policies over

senders and verifiers. The main difference with our approach is that we use homomorphic

encryption where no restriction is placed on the computation that can be performed, for

example the computation might be chosen at any time by any party. However, we do not

make provisions for verifiablity of the computation (i.e. ensuring that it was carried out

correctly). As mentioned in the introduction (see Section 1.1.1), verifiability is outside

the scope of this thesis, but there are approaches that can work in tandem with our

schemes to achieve verifiability.
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Fig. 2.1: Venn diagram of the intersection of thesis themes.

2.1 Homomorphic Encryption

Homomorphic encryption is the ability to operate on data while it remains encrypted. In

a nutshell, this means the ability to perform operations on the ciphertexts that result in

corresponding operations being performed on the underlying plaintexts. In other words,

given an encryption E(m1) of value m1 and an encryption E(m2) of value m2, it is

possible to obtain an encryption E(f(m1,m2)) of some function f of m1 and m2, without

access to the secret key. Mathematically, this can be viewed as a homomorphism∗

between the ciphertext space and plaintext space.

Homomorphic encryption traces its roots to a paper by Rivest, Adleman and Der-

touzos [162] from 1978, shortly after the emergence of Public Key Cryptography. The

goal in their paper is to delegate computations to an untrusted server without the server

learning the values of the inputs (input privacy) or the values of the outputs (output

privacy). As a means to solving this problem, they proposed the notion of a privacy

homomorphism, a deterministic encryption scheme that allows operations to be per-

formed on encrypted data without access to the secret key. They proposed a number of

candidate schemes, all of which were later broken [53]. An example of a multiplicative

∗See the Glossary (G3).
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privacy homomorphism is textbook RSA [163] †. An algebraic privacy homomorphism

is one that supports both addition and multiplication in a ring‡, such as ZN , where N

is a product of distinct primes.

One of the issues with privacy homomorphisms is that they are deterministic, and

hence not semantically secure§. Semantic security had not yet been advanced in the

literature when [162] was published. It was formalized shortly thereafter in the semi-

nal work of Goldwasser and Micali [107]. Indeed the modern notion of homomorphic

encryption is understood to be probabilistic. Beginning with Goldwasser and Micali’s

pioneering work, provable security became a mainstay of the cryptography community,

and achieving semantic security for a public-key encryption scheme became a mini-

mum requirement. Consequently, we will confine ourselves to homomorphic encryption

schemes that have been proven semantically secure under a well-defined computational

assumption.

To illustrate the concept of homomorphic encryption (HE), we give an example of a

symmetric HE scheme i.e. a scheme where the encryption and decryption keys are the

same. We denote by P the set of plaintexts and CK the set of valid ciphertexts under

some key K. Let DK : CK → P denote the decryption function with key K. Let ⊕

be some operation on the plaintexts, and let � be some operation on the ciphertexts.

Then for any c1, c2 ∈ CK , we have that DK(c1 � c2) = DK(c1) ⊕ DK(c2). Technically,

the decryption function DK : CK → P is a homomorphism.

An important distinction is to be made between fully homomorphic encryption (FHE)

and partially homomorphic encryption (PHE). The former informally means that any

computable function can be performed on the encrypted data, whereas the latter facili-

tates certain functions to be evaluated, but not all.

Typically, at least in all known constructions, FHE is achieved by preserving the

†Textbook RSA is not semantically secure since it is deterministic. Its probabilistic variants Optimal

Asymmetric Encryption Padding (OAEP) [26] and OAEP+ [169] lose the homomorphic property.
‡See the Glossary (G2).
§See the Glossary (G6).
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ring structure of the plaintext space. As a result, both multiplication and addition are

supported, which allows arbitrary arithmetic circuits to be evaluated. In contrast, PHE

generally preserves the group¶ structure of the plaintext space under one operation,

although there are some notable exceptions which we will see shortly.

2.1.1 Partially Homomorphic Encryption

Before Gentry’s breakthrough in 2009 [93], all homomorphic public-key cryptosystems

were partially homomorphic. For example RSA can be viewed as homomorphic for

modular multiplication [163], albeit it is not semantically secure because encryption is

not probabilistic.

2.1.1.1 Group Homomorphisms

An important subclass of PHE is the class of public-key encryption schemes that admit

a group homomorphism between their ciphertext space and plaintext space. This class

corresponds to what is considered “classical” HE [18], where a single group operation

is supported, most usually addition. Gjøsteen [101] examined the abstract structure of

these cryptosystems in terms of groups, and characterized their security as relying on the

hardness of a subgroup membership problem. Armknecht, Katzenbeisser and Peter [18]

rigorously formalized the notion, and called it group homomorphic encryption (GHE).

Before discussing well-known instances, we begin with the formal definition of GHE by

Armknecht, Katzenbeisser and Peter [18].

Definition 2.1.1 (Definition 1 in [18]). A public-key encryption scheme E = (G,E,D)

is called group homomorphic, if for every (pk, sk) ← G(1λ), the plaintext space P and

the ciphertext space Ĉ (written in multiplicative notation) are non-trivial groups such

that

¶See the Glossary (G1).
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• the set of all encryptions C := {c ∈ Ĉ | c ← Epk(m),m ∈ P} is a non-trivial

subgroup of Ĉ

• the restricted decryption D∗sk := Dsk|C is a group epimorphism (surjective homo-

morphism) i.e.

D∗sk is surjective and ∀c, c′ ∈ C : Dsk(c · c′) = Dsk(c) ·Dsk(c
′)

• sk contains an efficient decision function δ : Ĉ → {0, 1} such that

δ(c) = 1 ⇐⇒ c ∈ C

• the decryption on Ĉ \ C returns the symbol ⊥.

Goldwasser and Micali [107] constructed the first GHE scheme, which was also the

first homomorphic scheme to be semantically secure. The Goldwasser-Micali (GM) cryp-

tosystem supports addition modulo 2 i.e. the XOR operation. Breaking the semantic se-

curity of GM is equivalent to solving the quadratic residuosity problem, a well-established

problem in number theory that is believed to be intractable.

One of the disadvantages of GM is that it can only encrypt a single bit at a time. A

single bit of plaintext is encrypted as an element of ZN , where N is an RSA modulus;

that is, a product of two large primes. The ciphertext expansion is therefore lgN .

Subsequent works generalized GM with a view to obtaining a more efficient scheme in

terms of expansion, but also supporting an additive homomorphism in a larger plaintext

space [83].

Benaloh [29] generalized GM to handle plaintexts in the range {0, . . . , k−1} where k is

a prime. Thus, Benaloh is homomorphic for the additive group (Zk,+). The expansion is

then reduced to lgN/ lg k. The cost of decryption (without precomputation) is estimated

to be O(
√
k lg k) [83] (a precomputation step with the same cost can be carried out to

speed up decryption). This cost places a limit on how large k can be; clearly, it must be

polynomial in the security parameter‖.

‖See the Glossary (G5).
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Naccache and Stern [147] generalized Benaloh and obtained a cryptosystem with

reduced decryption time and accommodation of large k, which can be superpolynomial.

Under a particular choice of parameters, ciphertext expansion can be reduced to as low

as 4 times the plaintext size.

Starting with GM, all of the schemes thus far have operated in ZN where N = pq

with p and q being two large distinct primes. Okamoto and Uchiyama [149] instead

explored the possibility of N = p2q, and obtained a scheme with k = p and a ciphertext

expansion of 3 times the plaintext size.

Building on the Okamoto and Uchiyama construction, Paillier [154] proposed an

improved scheme with a ciphertext expansion factor of 2, and low encryption and de-

cryption cost. Paillier’s scheme is one of the most efficient and widely-used additively

homomorphic cryptosystems. As a result of its practicality, it is well-suited to applica-

tions such as electronic voting [74].

Damg̊ard and Jurik [74] generalized Paillier to higher-order groups ZNs+1 with s > 0.

Paillier corresponds to the special case of s = 1. Damg̊ard-Jurik allows plaintexts to

lie in the set ZNs , and as a result, expansion is lowered to 1 + 1/s at the expense of

increased encryption and decryption cost. Damg̊ard-Jurik has been adapted by [85] to

the setting of elliptic curves over rings , but the resulting scheme has worse encryption

and decryption performance. Despite several advances in the literature, Paillier’s original

system remains the most efficient additively homomorphic scheme.

The additively homomorphic schemes considered above, GM [107], Benaloh [29],

Naccache-Stern [147], Okamoto-Uchiyama [149], Paillier [154] and Damg̊ard-Jurik [74],

are all instances of GHE; that is, they all satisfy Definition 2.1.1. Other examples of GHE

from the literature include [75,101,102]. Of particular mention is Damg̊ard’s variant [75]

of ElGamal [79] which influenced the definition of GHE by Armknecht et al. Specifically,

the decision function δ was included in the definition to encompass Damg̊ard’s ElGamal;

in all other cases, the decision function is trivial. Moreover, we remark that ElGamal

meets the above definition for its multiplicative homomorphism. Although it is well-
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known that ElGamal also supports modular addition [69], its reliance on a brute-force

search to recover the result limits the size of the message space, and so it cannot be

classified as meeting the definition of GHE with respect to addition.

GHE is the “classical” flavor of homomorphic encryption. It allows unbounded appli-

cations of the group operation. Furthermore, a ciphertext can be easily rerandomized by

multiplying (assuming multiplicative notation) it with an encryption of 1. Doing so after

any homomorphic evaluation ensures the resulting ciphertext has the same distribution

as a freshly encrypted ciphertext. A scheme with this property is said to be strongly

homomorphic using the terminology of [103].

2.1.1.2 “Bounded Homomorphisms”

Unlike GHE, there are schemes that do not allow an unbounded number of homomorphic

operations to be performed. In such schemes, ciphertexts emerging from evaluation have

a different distribution to fresh encryptions. Inherent in the ciphertexts is an implicit

“noise” that grows as homomorphic evaluation is carried out [92]. Decryption is only

guaranteed to be successful when the noise is below a certain threshold. Overflowing this

threshold results in an undefined outcome. This type of homomorphism has been referred

to as a “bounded homomorphism” [157] or a “pseudohomomorphism” [125, 137, 138].

Linear codes and lattices facilitate construction of this type of cryptosystem; additively

homomorphic examples include [19, 105, 125, 137, 138, 157]. Two of these [19, 138] also

allow multiplications, but at the cost of an exponential blowup in ciphertext size.

Gentry departs from using the term “bounded homomorphism” in [92] in favor of

adopting a unified definition of HE that captures “bounded homomorphisms” and con-

ventional group homomorphisms, among many others, as special cases. Before present-

ing his definition and focusing our attention on FHE, we will take a look at some of the

schemes that support more than a single algebraic operation.
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2.1.1.3 Evaluation of more than one homomorphic operation

As mentioned earlier, the schemes from [19, 138] support addition and multiplication,

but the ciphertext size exponentially grows with the multiplicative depth.

Sanders, Young and Yung (SYY) [166] introduced a scheme that enables circuits in

the class NC1 to be evaluated. The class NC1 is the class of decision problems decided

by Boolean circuits with nO(1) gates and depth O(log n), where n is the number of inputs.

The size of the evaluated ciphertexts is exponential in the depth d of the circuit. This

explains why circuits in NC1 are the only ones that can be feasibly evaluated. SYY

makes use of a re-randomizable public-key cryptosystem, such as any GHE scheme, to

achieve this goal. Suppose Alice encrypts her inputs and sends them to Bob. Bob

can choose to “inattentively” evaluate a circuit C ∈ NC1 with Alice’s inputs, which he

remains oblivious to. Let d be the depth of C. Bob’s work is dependant on the size (i.e.

the total number of gates) of C, whereas the work Alice needs to do when performing

decryption is dependant only on the depth d.

SYY is also circuit-private for the family of uniform Boolean circuits of depth d, which

means that Alice learns nothing more about C beyond its depth and any information

leaked by the output of the evaluation. Interesting functions in NC1 include division,

powering, addition, Boolean matrix multiplication and the majority function.

Ishai and Paskin [120] put forward a scheme that can evaluate branching programs

of polynomial size. A branching program is a directed acyclic graph where the internal

nodes are labeled with (Boolean) variables; such nodes have left and right children.

Evaluation proceeds downwards from the root: at each internal node, one follows the

left branch (resp. the right branch) if the value of the node’s corresponding variable is

0 (resp. 1). The leaf nodes are labeled with the output of the program for that path,

which corresponds to a unique assignment of the inputs. Branching programs are a

powerful model of computation. Polynomial-sized branching programs with constant-

width can decide exactly the decision problems in NC1 [23]. Evaluated ciphertexts in
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the Ishai-Paskin scheme are smaller than those in SYY [166].

Boneh, Goh and Nissim (BGN) [40] developed an interesting scheme using Bilinear

pairings that could evaluate quadratic formulae over a finite field. More precisely. it

supports a single multiplication and an arbitrary number of additions. The single mul-

tiplication is accomplished using a bilinear pairing, Like ElGamal and Benaloh, message

recovery requires the computation of a discrete logarithm (i.e. the value is stored in

the exponent), which limits the size of the message space. A well-suited special case is

2-DNF formulae, i.e. formulae in disjunctive normal form (DNF) whose conjunctions

have at most 2 variables. BGN has small ciphertexts and is practical. It is useful for

dedicated applications requiring dot products or 2-DNF formulae.

2.1.2 General Definition of Homomorphic Encryption

Gentry presented a general definition of HE that encompasses the various types of ho-

momorphisms we have seen so far. In his definition, the homomorphic computations

supported by a HE scheme are described by a class of supported circuits. There are

other models of computation one could choose instead of circuits, including branching

programs, formulas and finite automata, to name just a few. Circuits are as powerful as

any other known representation model, and almost all the homomorphisms we have seen

so far can be viewed naturally in terms of circuits. For example: a scheme that is group-

homomorphic for the group (P, ∗) can evaluate any arithmetic circuit over P built with

the “gate” ∗. Furthermore, BGN can be viewed as supporting arithmetic circuits built

form the gates {+, ∗} with multiplicative depth 1. The syntactic formalism of expressing

a given homomorphic computation as a circuit does not preclude the encapsulation of

schemes with inherent support for other representation models, e.g: branching programs

in the case of Ishai-Paskin [120], because such schemes can internally convert a circuit

from a supported family into another representation model prior to evaluation.

Now we consider Gentry’s definition in more detail. A homomorphic encryption

(HE) scheme E consists of four algorithms Gen,Encrypt, Decrypt and Eval. In addition
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E has plaintext space P, ciphertext space C and supports a class of circuits C. Gen

is a randomized algorithm that takes as input a security parameter λ and generates

a public and private key pair (pk, sk). Encrypt is a randomized algorithm that takes

as input a public key pk and a plaintext µ ∈ P, and outputs a ciphertext ψ ∈ C.

Decrypt is a deterministic algorithm that takes a secret key sk and a ciphertext ψ ∈ C,

and outputs a plaintext µ′ ∈ P if ψ is an encryption of µ′ under the public key pk;

it outputs ⊥ otherwise. Finally, Eval is a randomized algorithm that takes as input a

public key pk and a circuit C ∈ C along with ` ciphertexts ψ1, . . . , ψ` ∈ C, and outputs a

ciphertext ψ′ ∈ C. Assuming that ψi encrypts µi ∈ P for every i ∈ [`], then ψ′ encrypts

C(µ1, . . . , µ`).

The computational complexity of all four algorithms must be polynomial in the

security parameter λ. Let us consider a more formal definition of correctness:

Definition 2.1.2 (Correctness of Homomorphic Encryption, Definition 2.1.1 [92]). A

homomorphic encryption scheme E is said to be correct for circuits in C if, for every

key-pair (pk, sk) ← Gen(1λ), any circuit C ∈ C, any plaintexts µ1, . . . , µ`, and any

ciphertexts ψi ← Encrypt(pk, µi) for i ∈ [`], it is the case that:

if ψ′ ← Eval(pk, C, ψ1, . . . , ψ`), then Decrypt(sk, ψ′)→ C(µ1, . . . , µ`)

except with negligible probability∗∗ over the random coins used in Eval.

Correctness as per Definition 2.1.2 still allows trivial constructions of HE, as pointed

out in [92]. In more detail, it is sufficient for Eval to simply output the circuit C together

with the input ciphertexts ψ1, . . . , ψ`. The burden is then placed on Decrypt to evaluate

the circuit (it first decrypts the ψi). Such a construction trivially satisfies correctness.

To exclude such trivial schemes, Gentry introduces an additional condition, called

compactness, that places an upper limit on the length of the ciphertexts outputted

by Eval (we refer to such ciphertexts as evaluated ciphertexts). The length of such a

∗∗See the Glossary (G4).
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ciphertext is required to be at most some fixed polynomial in λ, and hence independent

of the number of inputs `, and in turn, the size of C. Gentry formally captures the

requirement by restricting the size of the decryption circuit (i.e. a circuit representation

of Decrypt) to be at most some polynomial in λ. This implies that decryption must

be independent of the number of inputs ` to Eval. It is easy to see that this excludes

the trivial construction above. The formal definition employed throughout this thesis is

based on limiting the ciphertext size, which we find to be more terse for our purposes.

Definition 2.1.3 (Compactness, Definition 3.4 [49]). †† A HE scheme E is said to be

compact if there exists a polynomial s(·) such that the output of Eval on any input is at

most s(λ) bits long.

We inherit the term “compactly evaluates” from Gentry [92] with the meaning that

E “compactly evaluates” circuits in C if E is both correct (i.e. it satisfies Definition 2.1.2)

and compact (i.e. it satisfies Definition 2.1.3) for C. We also use this term with respect

to classes of functions. In this way, we say that a scheme that is group-homomorphic for

(P, ∗) compactly evaluates all functions in {x1, . . . , xt 7→ c ∗x1 ∗ · · · ∗xt : c ∈ P, t ∈ Z+},

and BGN compactly evaluates 2-DNF formulae.

2.1.3 Fully Homomorphic Encryption

Let us start with the following simple definition that makes use of the notion “compactly

evaluates” introduced earlier.

Definition 2.1.4 (Fully Homomorphic Encryption, Definition 2.1.4, [92]). A scheme E

is said to be fully homomorphic if it compactly evaluates all circuits.

††Compactness, as defined, is a strong requirement, and it excludes some interesting schemes such as

Ishai-Paskin [120] whose evaluated ciphertexts are linearly sized in the depth of the circuit. A weaker

notion of compactness, referred to as “quasi-compactness” in [92], allows the size of the secret keys and

ciphertexts to depend polynomially on the depth of the circuit. However, we work with the stronger

notion of compactness in this work.
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A fully homomorphic encryption (FHE) scheme can evaluate all polynomial-time

computable functions. Strikingly, it achieves this without expanding the ciphertext size.

For many applications, we need only the capability to evaluate circuits of some limited

depth. Leveled FHE is a relaxation of FHE that can evaluate circuits of depth at most

some positive integer d. While the size of the public key may depend polynomially on

d, the computational complexity of the decryption algorithm must remain independent

of d. A formal definition follows.

Definition 2.1.5 (Leveled Fully Homomorphic Encryption, Definition 2.1.5 [92]). A

family of HE schemes {E(d) : d ∈ Z+} is said to be leveled fully homomorphic if, for

all d ∈ Z+, they all use the same decryption circuit, and E(d) compactly evaluates all

circuits of depth at most d. Furthermore, it is required that the computational complexity

of E(d)’s algorithms Gen, Encrypt and Eval be polynomial in λ, d and in the case of Eval,

the size of the circuit C.

2.1.3.1 Gentry’s Bootstrapping Theorem

In [92, 93], Gentry proves a fundamental result about the construction of leveled FHE.

Consider a HE scheme E that compactly evaluates circuits in some class CE . Without

loss of generality, we assume that E encrypts single bits i.e. P = {0, 1}. Let DE be E ’s

decryption circuit. Now suppose that CE contains DE and an “augmented” decryption

circuit D′E . In more detail, D′E consists of a universal gate such as a NAND gate whose

two input wires connect to two independent copies of DE . Gentry calls a scheme that can

compactly evaluate its own augmented decryption circuit bootstrappable. In a nutshell,

the process that Gentry called “bootstrapping” involves performing decryption on a

ciphertext homomorphically ; the following scenario may help elucidate this concept.

Suppose that when Alice generates her key-pair, she first computes (pk, sk)← E .Gen(1λ)

and (pk′, sk′) ← E .Gen(1λ). She then encrypts the secret key bits of sk (using E)

with the public key pk′; that is, she obtains ski ← E .Encrypt(pk′, ski), where ski de-

notes the i-th bit of sk for i ∈ [t], and t is the bit-length of sk. Alice publishes
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(pk, pk′, sk := (sk1, . . . , skt)) as her public key, and retains sk′ as her private key. Let ψ be

a ciphertext that encrypts some bit under pk. It is possible to transform ψ into a cipher-

text ψ′ that encrypts the same bit under pk′. To accomplish this, Bob encrypts each bit

of ψ := (ψ1, . . . , ψk) ∈ {0, 1}k under pk′; that is, he computes ψi ← E .Encrypt(pk′, ψi) for

i ∈ [k]. Let ψ = (ψ1, . . . , ψk). Accordingly, he can now use E .Eval to homomorphically

evaluate the decryption circuit DE with encrypted inputs sk and ψ. More precisely, he

computes ψ′ ← E .Eval(pk′, DE , sk, ψ), which encrypts the same bit as ψ, but under a

different public key, namely pk′. Because the “augmented” decryption circuit DE ′ ∈ CE

is supported by E , an additional NAND gate can be performed on two ciphertexts like

ψ′.

Gentry observed that a bootstrappable scheme E can be used to construct a leveled

FHE scheme for any d ∈ Z+. Essentially, the above process is naturally extended to

generate d key-pairs (pk(1), sk(1)), . . . , (pk(d), sk(d)) for E . Alice’s public key contains

(pk(1), . . . , pk(d), sk(1), . . . , sk(d−1)) where sk(i) contains encryptions under pk(i+1) of the

secret key bits of sk(i) for i ∈ [d − 1]. The public key pki is associated with a circuit

depth of i− 1 (i.e. level i− 1). To evaluate a circuit (of NAND gates in this case), Bob

computes a single NAND gate on the ciphertexts at each level before transforming the

resulting ciphertexts to the public key of the next level via the procedure above.

2.1.4 Background on Lattices

Informally, a lattice can be viewed geometrically as a set of points in m-dimensional

space with a periodic structure. Algebraically, an n-dimensional lattice L is a discrete

additive subgroup of Rm for some integer m ≥ n. A basis of a lattice is a set of n linearly

independent vectors in Rm; we can view a basis as the columns of a matrix B ∈ Rm×n.

The lattice L(B) ⊂ Rm generated by a linearly independent basis B ∈ Rm×n is the set

{B~w : ∀~w ∈ Zn}.

We now define some specific hard problems on lattices which are of importance in

cryptography.
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Definition 2.1.6. Shortest Vector Problem (SVP): Given a lattice L, find a shortest

non-zero vector ~v ∈ L (there may be more than one vector in L whose length is shortest);

that is, ‖~v‖ is minimized in some specified norm.

Definition 2.1.7. Closest Vector Problem (CVP): Given a lattice L and vector ~w ∈ Rn,

find a vector ~v ∈ L that is closest to ~w; that is, ‖~w− ~v‖ is minimized in some specified

norm.

Definition 2.1.8. Shortest Independent Vector Problem (SIVP): Given an n-dimensional

lattice L, find n linearly independent vectors ~v1, . . . , ~vn such that for every basis ~b1, . . . , ~bn ∈

Rm for the lattice L, it holds that max‖|~vi‖| < max ~bi.

The above problems have approximation variants. In the case of SVP, given some

approximation factor γ ∈ R, the goal is to find a non-zero vector in the lattice whose

length is at most γ times the length of the shortest non-zero vector. The approximation

form of SIVP is defined similarly. In the approximation form of CVP, the goal becomes

to find a vector in the lattice whose distance to the target vector is less than γ for some

γ ∈ R.

Remark SVP was shown by Ajtai to be NP-hard [12]. CVP is a harder problem than

SVP, as SVP can be reduced to CVP [11].

2.1.5 Constructions of Fully Homomorphic Encryption

2.1.5.1 FHE from Ideals: Gentry’s Paradigm

The first construction of FHE [93] was based on ideals, in particular, on ideal lattices.

As mentioned in [173], ideals are a “natural mathematical object to construct fully

homomorphic encryption since they natively support both addition and multiplication”.

Gentry’s framework for an FHE cryptosystem based on ideals has the following form.

A user’s public and private key corresponds to an ideal I in a ring R. The private key

consists of a short generator of I, while the public key is a random generator of I. A
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ciphertext has a noise component drawn from an ideal J . Typically, we have J = 〈2〉 ⊂ R

when the message space is {0, 1}. In summary, a ciphertext c that encrypts m ∈ {0, 1}

has the form c = ri + rj + m ∈ R where ri
$←− I and rj is a “small” element drawn

from J . It is easy to see that addition and multiplication of ciphertexts preserve this

form due to the properties of an ideal. In [93], Gentry instantiates R with ideal lattices

and obtains a bootstrappable scheme based on two assumptions: the first is a variant

of the well-known closest vector problem on ideal lattices while the latter is a sparse

subset-sum problem that is new and not so widely studied.

Subsequent works also follow the same “blueprint” as that above, and explicitly

use ideals. They include a variant of Gentry’s scheme due to Smart and Vercauteren

[170], and an optimization thereof by Stehl and Steinfeld [171]. Moving away from

lattices, van Dijk et al. [174] presented a construction that works over the integers (i.e.

R = Z) and assumes hardness of an approximate GCD problem. Finally, Brakserksi and

Vaikuntanathan [51] based security on the Ring Learning with Errors (RLWE) problem

introduced in [136], which has a worst case reduction‡‡ to problems on ideal lattices. The

central contribution in the latter two papers is a new somewhat homomorphic scheme;

the authors then use the techniques of Gentry to make the scheme bootstrappable, and

hence still rely on the hardness of the (relatively unstudied) sparse subset-sum problem.

2.1.5.2 FHE from Learning with Errors: Brakerski and Vaikuntanathan

Paradigm

Another paradigm appeared in 2011 due to Brakerski and Vaikuntanathan [49]. They

succeeded in developing a scheme whose security relied on the Learning with Errors

problem. The Learning with Errors (LWE) problem was introduced by Regev [161] in

2005, and because of a known worst-case reduction from a hard lattice problem [141,

142,156,161], it has received considerable interest from the cryptography community.

Public-key encryption schemes based on LWE such as [97, 161] support a natural

‡‡See the Glossary (G8).
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additive homomorphism with minimal changes. Brakerski and Vaikuntanathan observe

that they too can support compact multiplication by using a technique they call relin-

earization. By using the additional technique of dimension-modulus reduction, they also

achieve a bootstrappable scheme directly from LWE, and without requiring a sparse

subset-sum assumption. As with all bootstrappable schemes, they must make a circular

security assumption, but besides that, they move FHE on to solid ground. Security

based on LWE alone is attractive due to the fact that it has a worst-case reduction from

a hard lattice problem.

We call the above paradigm, centered on relinearization, the Brakserki-Vaikuntanathan

(BV) paradigm. Building on this, a subsequent work achieved leveled FHE from stan-

dard LWE (without a circular security assumption) [48] by introducing the technique of

modulus switching. Another novel twist to this paradigm due to Brakserki [47] achieved

leveled FHE without modulus switching.

BV-based cryptosystems can also be easily adapted to work in a polynomial ring.

Security is then based on the hardness of the Ring Learning with Errors (RLWE) problem

instead of standard LWE. More concretely, security assumes the hardness of problems on

ideal lattices instead of general lattices. Despite the special structure of ideal lattices, no

algorithm has been found for well-known lattice problems that performs better on ideal

lattices than on general lattices [136]. Much of the state of the art in implementing FHE

has focused on RLWE-based schemes that employ the ideas above in the polynomial

ring setting. The reason for this is the greater performance obtainable in such rings

because multiplication can be implemented more efficiently; the complexity is O(n log n)

as opposed to n2. An example of a recent RLWE FHE scheme is [81].

2.1.5.3 FHE from NTRU

López-Alt, Tromer and Vaikuntanathan (LTV) [135] put forward an FHE scheme based

on the public-key cryptosystem NTRU [117]. Remarkably, their construction supports

evaluation with up to N different (independently-generated) keys, where N is a parame-
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ter chosen in advance. They prove security assuming the hardness of RLWE and another

problem, referred to as the Decisional Small Polynomial Ratio (DSPR) problem. The

latter, however, is a non-standard assumption that has not been well studied in the

literature.

2.1.5.4 Approximate Eigenvector Paradigm

At Crypto 2013, Gentry, Sahai and Waters [98] presented an alternative paradigm to

BV in achieving leveled FHE, while still basing security on LWE. Their paradigm avoids

the need for relinearization, modulus switching etc. In their paradigm, ciphertexts are

matrices that are constructed so that their (“approximate”) eigenvectors are the secret

key, whose corresponding eigenvalue is the plaintext. The homomorphic properties follow

from the inherent homomorphic properties of eigenvectors.

This completes our review of public-key FHE. In the next section, we take a look

at the state of the art in identity-based and attribute-based encryption. Finally, we

explore the overlap between what we have seen in this section and what appears in the

next section; this then sets us up to examine the state of the art in attribute-based

homomorphic encryption to date.

2.2 Identity/Attribute Based Encryption

2.2.1 Overview of Identity Based Encryption

Identity Based Encryption (IBE) was first proposed in 1985 by Shamir [167], and re-

mained an open problem until 2001. In an IBE scheme, a Trusted Authority (TA)

manages the system and issues secret keys to users corresponding to their identities.

Examples of identity include an email address, phone number or social security number.

The TA is sometimes known as the Private Key Generator (PKG) or Key Generation

Center (KGC); however we will use the term TA in this thesis.

The TA generates a master public key and a master secret key, and publishes the
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master public key. In this work, we use the term “public parameters” to refer to the

master public key, following a recent trend in the literature. The master secret key is

used to derive a secret key for a given identity. For example, suppose Bob is issued

a secret key for his email address from the TA in the company C that he works for.

Alice can send an encrypted message to Bob if she knows the public parameters of C

(which may be available, for example, on its website) and Bob’s email address. She does

not have to fetch and verify a public key for Bob, which eliminates unwieldy PKI. A

downside however is the inherent escrow that exists in IBE. In this case, C’s TA can read

Alice’s message since it can derive a secret key for Bob’s email address. For this reason,

IBE on its own is more appropriate for company and organizational communication than

personal communication. There are approaches to help minimize the escrow, including

the use of multiple trusted authorities in deriving secret keys [130], certificate-based

encryption [90] and certificateless cryptography [15].

Another downside is that revocation is more tricky than conventional PKI. If Bob’s

secret key is compromised, the attacker can decrypt all messages ever encrypted under

that particular identity string (in this case, Bob’s email address). One solution is to

include a time-span as part of an identity string to indicate validity [38]. Let’s say

this is done on a daily basis. Accordingly, Alice encrypts a message with the “identity

string” bob|date where date denotes the current date. Alternatively Alice may encrypt

a message to Bob for a date in the future [144] if the TA is trusted to not release the

secret key to Bob before the specified future date. When a time window is embedded

in the identity string, an attacker, in the event of a compromise, can decrypt messages

associated with that time period. Issuing keys with a finer granularity further minimizes

the scope of attack.

Formally, an Identity Based Encryption (IBE) scheme is a tuple of probabilistic poly-

nomial time (PPT) algorithms (Setup,KeyGen,Encrypt,Decrypt) defined with respect a

message space P, an identity space I and a ciphertext space C as follows:

• Setup(1λ):
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On input (in unary) a security parameter λ, generate public parameters PP and a

master secret key MSK. Output (PP,MSK).

• KeyGen(MSK, id):

On input master secret key MSK and an identity id: derive and output a secret

key skid for identity id.

• Encrypt(PP, id,m):

On input public parameters PP, an identity id, and a message m ∈ P, output a

ciphertext c ∈ C that encrypts m under identity id.

• Decrypt(skid, c):

On input a secret key skid for identity id and a ciphertext c ∈ C, output m′ if c is

a valid encryption under id; output a failure symbol ⊥ otherwise.

Like public-key encryption, semantic security in the context of IBE is equivalent to

indistinguishability under a chosen plaintext attack (IND-CPA). In more detail, IND-CPA

for IBE comes in two flavors - selective (denoted by IND-sID-CPA) and full/adaptive

(denoted by IND-ID-CPA). In the former, the adversary has to choose an identity to

attack prior to receiving the public parameters, whereas in the latter, the adversary can

make arbitrary secret key queries before choosing a target identity. Informally, these

security definitions capture the desired property of collusion resistance. In other words,

a number of users who share their secret keys with each other should not be able to

derive the secret key of some target identity. Formally, the security notions are defined

by an adversary A’s success in the following game(s).

• Set id∗ ← ⊥.

• (Selective-security only): A chooses a target identity id∗ ← I to attack.

• The challenger generates (PP,MSK)← Setup(1λ), and gives PP to A.
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• Key Queries (1): A can make queries to an oracle O defined by

O(id) =


KeyGen(MSK, id) if id 6= id∗

⊥ otherwise

.

• (Full-security only): A chooses its target identity id∗ ← I now.

• Challenge Phase: A chooses two messages m0,m1 ∈ P and sends them to the

challenger.

• The challenger uniformly samples a bit b
$←− {0, 1}, and returns c∗ ← Encrypt(PP, id∗,mb).

• Key Queries (2): A makes additional queries to O.

• Guess: A outputs a guess bit b′.

The adversary is said to win the above game if b = b′. Let E be an IBE scheme. We

define the advantage AdvIND-X-CPA
E,A (λ) of A in the IND-X-CPA game for X ∈ {sID, ID}

as

AdvIND-X-CPA
E,A (λ) = Pr[b = b′]− 1

2

where the probability is taken over all the random coins used by the challenger and A.

We say that E is IND-X-CPA secure if AdvIND-X-CPA
E,A (λ) = negl(λ).

IBE was first securely realized in 2001 by Boneh and Franklin [38] based on bilinear

pairings, and independently by Cocks [66] based on quadratic residuosity. Thus far,

secure realizations have been achieved from bilinear pairings, quadratic residuosity and

lattices, which we will look at momentarily.

IBE was extended to the notion of Hierarchical IBE (HIBE) by Horwitz and Lynn

[118], and the first HIBE construction was presented shortly thereafter by Gentry and

Silverberg [99]. A HIBE scheme gives identities a hierarchical structure. An identity

string can be subdivided into sub-identities, which can in turn be further subdivided, up

to some depth d. Delegation is also facilitated insofar as a secret key for some identity

can be used to derive secret keys for its subordinate identities, and so on.
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Before examining constructions of IBE, we will first describe Attribute Based Encryp-

tion (ABE), a generalization of IBE with support for more fine-grained access control.

2.2.2 Overview of Attribute Based Encryption

Sahai and Waters [164] introduced a generalization of IBE known as Fuzzy IBE. In a

Fuzzy IBE scheme, an identity is viewed as a descriptive set of attributes. A secret-

key holder for identity id′ can decrypt a ciphertext encrypted with identity id if id′ is

“close” to id under some metric e.g: set overlap when the identities are viewed as sets of

attributes. This gave rise to what the authors called Attribute Based Encryption, where

a secret key authorized a party to decrypt ciphertexts associated with certain sets of

attributes.

Goyal et al. [113] formulated two complimentary flavors of Attribute Based Encryp-

tion (ABE): Key-Policy ABE (KP-ABE) and Ciphertext-Policy ABE (CP-ABE). In

KP-ABE, a user Alice encrypts her message with a descriptive tag or attribute§§ while

the TA issues secret keys for access policies that permit users to decrypt ciphertexts

with certain attributes. In CP-ABE, on the other hand, an encryptor specifies an access

policy when encrypting her message, and the TA issues secret keys to parties that corre-

spond to attributes. So the situation is the reverse of KP-ABE. In fact, there is another

lesser-known form called dual-policy ABE [21] that mixes both KP-ABE and CP-ABE.

Let us consider KP-ABE in slightly more detail. When encrypting a message m,

Alice chooses a descriptive attribute a from some set A. The trusted authority (TA)

issues secret keys for access policies to users depending on their credentials. To be more

precise, a policy f : A→ {0, 1} can be viewed as a predicate whose domain is A. Hence,

if a user Bob is given a secret key for a policy f , he can decrypt messages with attributes

that satisfy f . More precisely, let ca be a ciphertext that encrypts the message m with

some attribute a ∈ A. Then Bob can recover the message m if and only if f(a) = 1.

§§Some authors refer to what we call an attribute as a “set of attributes”. The latter notion is modelled

by viewing an attribute as a set (of “subattributes”).
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More generally, to cover both KP-ABE and CP-ABE, consider the following formu-

lation due to Gentry, Sahai and Waters [98]. In their formulation, both forms of ABE

are generalized in a straightforward way. Let X be a set of strings known as indices,

and let Y be some set of strings. Then consider a relation R defined on both X and Y.

A sender encrypts her message with an index x ∈ X, and a receiver can only decrypt

the message if he has a secret key sky for the string y ∈ Y with R(x, y) = 1. So in the

KP-ABE flavor, we have X = A, Y = F and R(a, f) = f(a). In contrast, the CP-ABE

flavor is represented as X = F, Y = A and R(f, a) = f(a). This generality is useful when

we need to discuss commonalities between the two forms of ABE; one such case below

is security definitions.

The notions of selective and adaptive security for IBE are defined analogously for

ABE. In the selective security game, which we denote by IND-sel-CPA, the adversary

chooses a target index x∗ prior to receiving the public parameters. In the adaptive

security game, which we denote by IND-AD-CPA, the adversary chooses a target index

x∗ after receiving the public parameters, and in addition, after a phase of secret key

queries for strings y of its choice. However, in both games, the adversary is not allowed

to query secret keys for strings y with R(x∗, y) = 1.

IBE can be viewed as a special case of ABE where X = Y and R is the equality

relation.

The major research directions for ABE have considered widening the expressiveness

of the access policies, and strengthening the proofs of security. The latter entails three

primary facets: (1). achieving adaptive over selective security; (2). working in the

standard model instead of the random oracle model¶¶ (ROM); and (3). relying only on

well-established computational hardness assumptions.

Katz, Sahai and Waters [124] introduced a generalization of ABE, in particular KP-

ABE, called Predicate Encryption (PE). A salient characteristic of PE is attribute-hiding,

which means that a ciphertext reveals no information about its associated attribute.

¶¶See the Glossary (G7)
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Alice encrypts her message with some attribute a ∈ A, and sends the ciphertext c to

Bob. Bob can decrypt c if he holds a key for a predicate f : A → {0, 1} with f(a) = 1.

There are two forms of PE known as match-concealing and match-revealing [168]. In the

former, Bob cannot learn which attribute a′ ∈ supp(f) is associated with c (note that

supp(f) denotes the support of f ; that is, the set {a′ ∈ A : f(a′) = 1}). However, the

other form, match-revealing, is weaker and may leak to Bob the attribute a associated

with c.

PE can be viewed in two ways. It can be viewed as a means to delegate computation

to a third party i.e. allow the third party to perform a precise fixed function f on the

encrypted data c, and thus limit what the third party learns about the data. This is

particularly true if we remove the payload (i.e. the message) from the ciphertext, and

focus our attention on the output of the predicate f . In the spirit of this viewpoint, a

generalization known as Functional Encryption (FE) has been proposed [42,152], which

allows general functions (beyond Boolean-valued functions) to be evaluated. There have

been several exciting developments in FE in recent years which are outside the scope of

this thesis [10,25,87,104,108,110,111].

PE can also be viewed, like ABE, as a means to achieve more fine-grained access

control. In this case, it retains its payload and the attribute serves as a guard that

protects access to the payload.

2.2.3 Constructions from Bilinear Pairings

Let us start by formally defining a bilinear pairing (also known as a bilinear map). The

following is based on the definition from [78] (Section 2).

Definition 2.2.1. Let G1, G2 and GT be cyclic groups of order n. We write G1 and G2

additively, and GT multiplicatively. A bilinear pairing e : G1×G2 → GT is an efficiently

computable map satisfying

• Bilinearity: e(aP, bQ) = e(P,Q)ab for all P ∈ G1, Q ∈ G2 and a, b ∈ Zn.
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• Non-degeneracy: If P is a generator for G1 and Q is a generator for G2, then

e(P,Q) 6= 1.

The group GT is known as the target group.

Examples of bilinear pairings (or their modifications) that are used in cryptography

include the Tate Pairing [22, 86], Weil Pairing [37], and Ate Pairing [116]. Before Joux

[122] employed the Weil Pairing to construct a one-round Diffie-Hellman key exchange

with three parties, bilinear pairings had been mainly used in cryptanalysis against elliptic

curves [84,139]. At present, all known efficient realizations of bilinear pairings are based

on elliptic curves. However, our discussion will remain at a high-level; we do not need

to discuss concrete realizations of the bilinear pairings or the underlying groups.

Boneh and Franklin [38] presented the first IBE scheme in 2001 based on bilinear

pairings. To give the reader an idea how IBE is realized with a bilinear pairing, we

sketch the Boneh-Franklin scheme below.

2.2.3.1 Boneh-Franklin

The Boneh-Franklin scheme uses prime order groups; that is, n = p for some prime p in

Definition 2.2.1. Moreover, the pairing e used in Boneh-Franklin is symmetric; that is,

G1 = G2.

Let G and GT be cyclic groups of prime order p. Let e : G×G→ GT be a bilinear

pairing satisfying Definition 2.2.1. Boneh-Franklin relies on the hardness of the following

computational problem in (G, GT , e).

Definition 2.2.2 ((Computational) Bilinear Diffie-Hellman (BDH) Problem, [38]). Given

(P, aP, bP, cP ) for some a, b, c ∈ Z∗p compute W = e(P, P )abc ∈ GT . An algorithm A has

advantage ε solving BDH in (G,GT , e) if

Pr[A(P, aP, bP, cP ) = e(P, P )abc] ≥ ε

where the probability is over the random choice of a, b, c ∈ Z∗p, the random choice of

P ∈ G, and the random coins of A.
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Let G∗ = G \ {OG} where OG is the identity element of G. We now sketch the basic

Boneh-Franklin scheme from [38], referred to therein as BasicIdent. We assume there is

an algorithm G that takes a security parameter λ, and outputs an appropriately selected

tuple (G,GT , e) such that the hardness of the BDH problem in (G,GT , e) matches the

desired security level λ.

• Setup: Run (G,GT , e) ← G(λ). Pick a generator P of G. Choose two hash

functions H1 : {0, 1}∗ → G∗ and H2 : G2 → {0, 1}m for some integer m, which are

modeled as random oracles in the security proofs in [38]. Choose a random integer

s
$←− Z∗p, and compute Ppub ← sP .

The message space is P = {0, 1}m. The ciphertext space is C = G × {0, 1}m.

The public parameters are PP := (G,GT , e,m, P, Ppub, H1, H2) (note that p is

assumed to be implicit from the description of the groups). The master secret key

is MSK := s ∈ Z∗p.

• KeyGen: On input an identity string id ∈ {0, 1}∗: compute Qid ← H1(id) ∈ G∗

and output Did ← sQid, where s is the master secret key.

• Encrypt: To encrypt message µ ∈ P under identity id: compute Qid ← H1(id) ∈

G∗; choose random r ∈ Z∗p; set CT ← (R := rP, ψ := µ ⊕H2(e(Qid, Ppub)r)); and

output ciphertext vector CT.

• Decrypt: To decrypt ciphertext CT := (R,ψ) with secret key Did ∈ G∗ for identity

id: compute µ← ψ ⊕H2(e(Did, R)) and output µ ∈ P.

Observe that for any identity id, the element Qid = H1(id) can be uniquely represented

as Qid = uP ∈ G∗ for some integer u ∈ Z∗p, since P generates G. It follows from the

bilinearity property of the pairing e that the decryptor computes (before applying H2)

the following element in GT :

e(Did, R) = e(Did, rP ) = e(sQid, rP ) = e(usP, rP ) = e(P, P )usr ∈ GT ,
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which matches the element in GT that the encryptor computes (before applying H2) i.e.

e(Qid, Ppub)r = e(uP, sP )r = e(P, P )usr ∈ GT .

Correctness follows immediately from this fact.

We won’t discuss details of the security proof here, but a key observation is that

(uP, sP, rP ) is a BDH problem instance. The solution to this instance, namely the

element e(P, P )usr ∈ GT , is used to hide the plaintext. The proof uses this fact to

obtain a reduction from BDH to breaking the semantic security of the scheme, which

relies on careful programming of the random oracles H1 and H2. Hence, Boneh-Franklin

is adaptively secure in the random oracle model.

2.2.3.2 IBE Without Random Oracles

Bilinear pairings have served as fertile ground for achieving IBE. Security of these

schemes has been commonly based on the decisional form of BDH, referred to as DBDH,

and its variants. One of the paramount challenges after Boneh-Franklin was removing

the random oracles. However, the earliest constructions [33, 55] in the standard model

were only selectively secure.

Recall that in the selective security model, the attacker must commit to his target

identity in advance of receiving the public parameters. Boneh and Boyen [34] showed

how to generically convert a selectively-secure IBE into a fully secure (i.e. adaptively

secure) IBE. This requires a restriction on the size of the identity space I, but its size is

still allowed to be exponentially large (in the security parameter) so this does not affect

any practical considerations. Suppose I consists of all binary strings of length m; that

is, I = {0, 1}m. An unfortunate consequence of the generic reduction from the selective

model to the adaptive model is that it incurs a degradation in security by a factor of

2m. What this means concretely is that to achieve adaptive security of 2λ against an

attacker, one must set the parameters of the scheme to achieve selective security of 2m+λ.

So if m = λ (say), then the security parameter of the scheme must be set to 2λ, which
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leads to less efficient encryption/decryption performance and larger ciphertexts. Note

that an adaptively-secure scheme obtained via this conversion has an exponential-time

reduction from the complexity assumption (such as DBDH) on which selective security

is based.

Boneh and Boyen [35] presented the first adaptively secure IBE system in the stan-

dard model with a polynomial-time reduction from a standard complexity assumption,

namely DBDH. They pointed out however that their scheme serves largely as a possi-

bility result due to the scheme’s impracticality. Waters [175] simplified their scheme to

make it considerably more efficient, although the public parameters are not compact and

the security reduction is not “tight” (it loses a multiplicative factor of O(q) where q is

the number of queries). Gentry [91] proposed a more practical scheme with a “tighter”

reduction, but relying on a stronger assumption (a variant of DBDH).

A significant breakthrough came in 2009 with the work of Waters [176], who proposed

a new proof strategy, termed dual system encryption, that enabled him to construct

an adaptively-secure IBE (and HIBE) with compact parameters under well-established

assumptions (DBDH and the decisional linear assumption). Dual system encryption

is a departure from the dominant proof paradigm, known as partitioning, that had

been mainly used to prove the security of IBE schemes in the standard model. In the

partitioning paradigm, the simulator (i.e. the reduction algorithm that uses the attacker

to solve the hard problem on which security is based) splits the identity space into two

classes: identities that it can derive a secret key for, and those that it cannot. The

goal is to ensure that the adversary’s target identity is in the latter class. This can

be achieved with far greater ease in the selective model because the simulator knows

the target identity when generating the public parameters. In the adaptive model, the

main technique used in previous works [35, 91, 175] is to abort the simulator unless the

adversary’s queries all fall into the first class and the target identity falls into the second

class - the simulator partitions appropriately to ensure that this event happens with

inverse polynomial probability. Dual system encryption works differently. It splits keys
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and ciphertexts into two types: normal and semi-functional. A semi-functional key

cannot decrypt a semi-functional ciphertext, but all other combinations work (e.g: a

semi-functional key can decrypt a normal ciphertext etc.). Besides this, the two types

of objects are indistinguishable. The proof proceeds by first changing the challenge

ciphertext to a semi-functional one, and then one-by-one, letting each queried secret

key be semi-functional. Finally, stripping the simulator’s ability to make normal keys

results in a game where the simulator can use the attacker’s advantage to solve the hard

problem.

2.2.3.3 ABE

Table 2.1 summarizes the progress made on constructing ABE from bilinear maps, and

categorizes the schemes based on type (KP-ABE / CP-ABE / PE), class of supported

access policies and security proof. With regard to the latter, Table 2.1 mentions a variety

of computational assumptions; we defer the interested reader to the corresponding paper

for more information on these assumptions∗∗∗. Due to the additional richness of ABE,

proving security is more difficult than IBE. There has been much research in recent

years towards expanding the class of access policies supported. Non-monotone formulae

(i.e. Boolean formulae with negations) are the most expressive class for which an ABE

scheme from bilinear maps has been proposed. Although the ABE scheme with the

strongest security guarantee [133] supports only monotone formulae†††, such formulae

are still quite expressive. Inner-product predicates can handle CNF and DNF formulae,

but of (poly)logarithmic degree only, which makes them less expressive than monotone

formulae.

∗∗∗MBDH = Decisional Modified Bilinear Diffie-Hellman (Definition 3 in [164]). GSD = General

Subgroup Decision Assumption (Assumption 1 in [133]), 3-DH = 3-Party Diffie-Hellman Assumption,

q-PBDHE = q-parallel Bilinear Diffie-Hellman Exponent Assumption (Defined in [133]). n-eDDH =

n-Extended Decisional Diffie-Hellman Assumption (Definition 7 in [132])
†††There is an extension to represent non-monotone formulae by explicitly including “negative at-

tributes” in the attribute sets.
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Type Access

Policies

Security Assumption Model

Sahai and

Waters [164]

KP-ABE k-out-of-n

threshold

Selective MBDH ROM

Goyal, Pandey,

Sahai and

Waters [113]

KP-ABE Monotone

Formulae

Selective DBDH Standard

Bethencourt,

Sahai and

Waters [30]

CP-ABE Monotone

Formulae

Adaptive Generic Group

Model + ROM

Cheung and

Newport [57]

CP-ABE AND gates Selective DBDH Standard

Katz, Sahai

and

Waters [124]

PE (KP-ABE

with attribute-

hiding)

Inner-Product

Predicates

Selective Generic Group

Model

Goyal, Jain,

Pandey and

Sahai [112]

CP-ABE Monotone

Formulae

Selective DBDH Standard

Ostrovksy,

Sahai and

Waters [153]

KP-ABE Non-monotone

Formulae

Selective DBDH Standard

Waters [177] CP-ABE Monotone

Formulae

Selective PBDHE Standard

Lewko, Okamoto,

Sahai, Takashima

and Waters [132]

PE (KP-ABE

with attribute-

hiding)

Inner-Product

Predicates

Adaptive n-eDDH Standard

Lewko and

Waters [133]

CP-ABE Monotone

Formulae

Adaptive 3-DH,

q-PBDHE,

GSD

Standard

Table 2.1: ABE schemes from Bilinear Pairings
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2.2.4 Constructions from Quadratic Residuosity

One of the earliest IBE schemes was presented by Cocks [66], which is adaptively secure in

the random oracle model under the hardness of the quadratic residuosity (QR) problem.

QR is a well-studied and standard problem from number theory, and basing security on

such an assumption is therefore attractive. The major problem with Cocks’ system is

that it suffers from high ciphertext expansion, requiring two elements in ZN , where N

is an RSA modulus, to encrypt a single bit of plaintext.

Boneh, Gentry and Hamburg (BGH) [39] constructed the first space-efficient variant

of the Cocks scheme. The size of ciphertexts using their scheme is quite practical; an

`-bit message requires a ciphertext whose size is log2N + `+1 bits, which contrasts with

2` · log2N bits in Cocks. However, encryption time in their scheme is quartic in the

security parameter, and thus has poor performance.

Cocks’ IBE is not anonymous, but anonymous variants have been proposed in the

literature [20,39,70]. So far, however, there has been no success in constructing schemes

from QR with more expressive access policies than IBE.

2.2.5 Constructions from Lattices

Gentry, Peikert and Vaikuntanathan (GPV) [97] introduced the first semantically-secure

IBE based on a hard problem on lattices. More specifically, they proved selective security

in the random oracle model of their scheme assuming the hardness of the Learning

with Errors (LWE) problem. LWE-based schemes with full security in the standard

model followed [7,8,56]. The first LWE-based scheme to go beyond IBE in terms of the

access policies supported was the inner-product predicate encryption scheme of Agrawal,

Freeman and Vaikuntanathan, who achieved selective security under LWE. This was

followed by an ABE for threshold functions, [9] which facilitated IBE; the security proof

was also in the selective model.

In more recent times, more ground has been made against pairings-based construc-
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tions. Gorbunov, Vaikuntanathan and Wee [109] described a selectively-secure scheme

that could support circuits of polynomial depth as its class of access policies. This is

the first ABE whose access policies can be arbitrary computations. The state-of-the-art

up that point was support for Boolean formulae. Since then, another selectively-secure

ABE for circuits was constructed from multilinear maps [88].

A trend the reader may notice is that the ABE scheme achieved from lattices so far

tend to be selectively secure only. Of course, one can apply Boneh and Boyen’s [34]

generic conversion from a selectively-secure to a fully-secure scheme, but this is at the

expense of much increased parameter sizes (recall that the conversion loses a factor of 2n

where n is the size of the attribute space). There does not seem to be a natural analogue

in the lattice world to Water’s dual-system approach in the pairings world; recall that

that approach that led fruitfully to full security for pairings-based schemes.

Now we have discussed the state-of-the-art in homomorphic encryption and identity-

attribute based encryption. In the next section, we explore the overlap between these

two topics along with existing research directions, with a view to discerning where our

research questions in this thesis fits in.

2.3 Identity-Based/Attribute-Based Homomorphic Encryp-

tion

There has been little research into homomorphic encryption in the attribute-based set-

ting. Since IBE is the simplest meaningful special case of ABE‡‡‡, it is a natural starting

point to investigate identity-based homomorphic encryption (IBHE). We will focus first

on the single-identity case i.e. where evaluation is supported only on ciphertexts with

the same identity. The two most prominent subclasses of homomorphic encryption, GHE

and FHE, will be examined in turn in an identity-based context.

‡‡‡ignoring public-key encryption.
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2.3.0.1 Group Homomorphisms

Identity-Based Group Homomorphic Encryption (IBGHE) has not been formally studied

in the literature. Many pairings-based IBE constructions either naturally or with mi-

nor modifications admit multiplicative group homomorphisms. As far as we are aware,

there are no additive IBGHE schemes. There are no IBE schemes with even an additive

homomorphism modulo 2 (i.e. XOR) such as that provided by the Goldwasser-Micali

(GM) [106] scheme. XOR-homomorphic schemes such as GM have been used in many ap-

plications including sealed-bid auctions [158], biometric authentication [54], the Sanders,

Young and Yung (SYY) [166] homomorphic scheme and Fischlin’s 2-round protocol [82]

for the millionaire’s problem [178]. One of the contributions of this thesis is an XOR-

homomorphic IBE scheme based on the quadratic residuosity problem. It remains open

to construct an unbounded additively homomorphic IBE scheme for a “large” range such

as Paillier [154]. Possibly a fruitful step in this direction would be Galbraith’s variant

of Paillier’s cryptosystem based on elliptic curves over rings [85].

Many pairings-based IBE and ABE schemes can be adapted so that they support

a multiplicative homomorphism. We list a selection of such schemes in Table 2.2 that

represents the state of the art. The contributions of this thesis with respect to ABGHE

are also listed in Table 2.2. Put simply, we present the first instance of an additively ho-

momorphic ABGHE. As shown in the Table 2.2, our construction is identity-based and

its supported message space is small. Nevertheless, it is the first instance of an additively

homomorphic ABGHE, and as we have already seen, such schemes have many applica-

tions - more specific applications are discussed in Chapter 4. Note that in Table 2.2, the

term “large” means superpolynomally large.

2.3.0.2 Evaluation of more than one homomorphic operation

Recall the BGN [40] scheme from Section 2.1.1.3 that could compactly evaluate quadratic

formulae (such as 2-DNF formulae). A BGN-type scheme based on lattices was described
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Message Space Operation Access Policies Security

Variant of

Boneh-

Franklin [38]

“Large” prime

order group

Multiplication IBE DBDH in ROM

Katz, Sahai and

Waters [124]

“Large” Prime

order group

Multiplication Inner Product

Predicates

Selective (Generic

Group Model)

Ostrovksy, Sahai

and Waters [153]

“Large” Prime

order group

Multiplication Non-monotone

Formulae

Selective under

DBDH

xhIBE

(Chapter 4)

{0, 1} XOR IBE Quadratic

Residuosity in

ROM

Generalization of

xhIBE

(Chapter 4)

{0, . . . , e} for

poly-sized e

Addition mod e IBE e-th Residuosity

in ROM

Table 2.2: Attribute Based Group Homomorphic Schemes

by Gentry, Halevi and Vaikuntanathan [94], and the authors point out that it can be

adapted to the identity-based setting. Until 2013, this was the IBE scheme with the

greatest “homomorphic capacity”.

2.3.0.3 Fully Homomorphic Encryption

At his talk at CHES/Crypto 2010, Naccache [146] mentioned “identity-based fully ho-

momorphic encryption” as one of a list of open problems. Towards this goal, it has been

pointed out in [50] that some LWE-based FHE constructions can be modified to obtain

a “weak” form of an identity-based FHE scheme using the trapdoor functions from [97];

that is, additional information is needed (beyond what can be non-interactively derived

from a user’s identity) in order to evaluate certain circuits and to perform bootstrapping.

Therefore, the valued non-interactivity property of IBE is lost whereby no communica-

tion between encryptors and the TA is needed.

For many years, an IBE scheme that could compactly evaluate circuits of polynomial
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depth (as in leveled FHE) or even logarithmic depth (“somewhat homomorphic encryp-

tion”) remained open. At Crypto 2013, Gentry, Sahai and Waters presented the first

identity-based (leveled) fully homomorphic encryption scheme [98].

Achieving leveled FHE in the identity-based setting turned out to be quite a tricky

problem, for a variety of reasons. Prior to the work of Gentry, Sahai and Waters, there

were two paradigms for constructing leveled FHE:

1. Gentry’s original paradigm based on ideals, which was introduced in [93] (works

which built on this include [170,174]); and

2. Brakersi and Vaikuntanathan’s paradigm based on the learning with errors (LWE)

problem [49, 52] entailing techniques such as relinearization, modulus switching

and dimension reduction.

It appeared like there was limited potential for obtaining identity-based FHE from the

first paradigm because no secure IBE schemes had been constructed with this structure;

that is, roughly speaking, no IBE scheme associated an identity with an ideal, and a

secret key with a “short” generator for that ideal.

The second paradigm appeared more fruitful. Starting with the work of Gentry,

Peikert and Vaikuntanathan (GPV) [97], constructions of IBE from LWE had emerged

[7, 8, 56]. But it was not straightforward to adapt Brakersi and Vaikuntanathan’s (BV)

ideas to the identity-based setting. The main reason for this is that BV-type FHE relies

on having “encryptions” of some secret key information, termed an evaluation key. If

a user directly supplies this information to an evaluator out-of-band, then evaluation

can be accomplished as in BV. IBE schemes where the evaluation key can be generated

by the key holder, but cannot be derived non-interactively, have been termed “weak”

[50,60]. Due to the difficulty of non-interactively deriving an “encryption” of secret key

information for a given identity (based on public information alone) meant that the BV

paradigm also seemed inhospitable to IBE.

Gentry, Sahai and Waters (GSW) [98] developed a new paradigm from LWE where
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the secret key is an approximate eigenvector of a ciphertext. Their construction is both

elegant and asymptotically faster than existing FHE schemes. Furthermore, it does

not rely on an evaluation key, which means that it can be adapted to support IBE. In

fact, a “compiler” was proposed in [98] to transform an LWE-based IBE satisfying cer-

tain properties into an identity-based (leveled) fully homomorphic encryption (IBFHE)

scheme, and it was noted that several existing LWE-based IBE schemes satisfy the re-

quired properties. The resulting IBFHE constructions are leveled i.e. they can evaluate

circuits of bounded multiplicative depth (polynomial in the security parameter, and

fixed prior to generation of the public parameters). However unlike their public-key

counterparts, these constructions are not bootstrappable, since bootstrapping relies on

“encryptions” of secret key information, akin to an evaluation key. As such, to the best

of our knowledge, there are no known “pure” IBFHE schemes in the literature, since

Gentry’s bootstrapping theorem from [93] is the only known way of converting a leveled

FHE scheme to a “pure” FHE scheme.

Remark Gentry, Sahai and Waters (GSW) [98] also present the first leveled ABFHE

from the LWE problem. In their leveled ABGHE, the access policies are circuits of a

depth that is bounded a priori. Like their leveled IBFHE constructions, their leveled

ABFHE works in the single-attribute setting only.

The contributions in this thesis with respect to attribute-based FHE compared to

the state of the art are summarized in Table 2.3. Our feasibility result in Chapter 7

gives a construction that is (1). a “pure” FHE scheme (i.e. it can evaluate all circuits);

(2). it supports all polynomially-sized access policies; and (3). it is multi-attribute

(i.e. supports evaluation with ciphertexts associated with different attributes). This

scheme maximizes each of the facets of an ABHE scheme as described in Section 1.3

in Chapter 1. However this comes at the cost of relying on a primitive called indistin-

guishability obfuscation (defined in Chapter 7), which is computationally expensive in

our construction.
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Towards the goal of more practical ABFHE, we take a look at the other contri-

butions listed in Table 2.3. In Chapter 6, we present an identity-based leveled FHE

scheme that unlike GSW, supports evaluation on ciphertexts with different identities;

hence it is multi-identity. Future work is to extend this result so that it supports richer

access policies. In Chapter 5, we present a “compiler” that compiles a scheme that

can evaluate polylogarithmic circuits (a leveled scheme more than suffices for exam-

ple) into one that can evaluate circuits of bounded arity, but unbounded depth. So

instantiating this scheme with our multi-identity scheme from Chapter 6 yields a fully-

homomorphic scheme with a priori bounded arity. This is an important result because

of the previously discussed difficulty of evaluating circuits of unbounded depth in the

attribute-based setting. We can also instantiate this construction with GSW, and this

gives us a single-attribute ABFHE with bounded arity. Our contributions leave open

the following question: owing to the fact that our feasibility result in Chapter 7 shows

the possibility of multi-attribute ABFHE for all poly-sized access policies, can we bridge

the gap with the more “concrete” schemes put forward in this thesis?
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Class of

Circuits

Access Policies Composition Security

Lattice BGN [94] 2-DNF Formulae IBE Single LWE

GSW [98] Leveled Bounded

poly-depth

circuits

Single Selective under

LWE

MIBHE

(Chapter 6)

Leveled IBE Multi Selective under

LWE in ROM

Construction

from Chapter 5

instantiated with

MIBHE

All

Bounded-Arity

Circuits

IBE Multi Selecitve under

LWE in ROM,

assuming secure

Multi-Key FHE

Construction

from Chapter 5

instantiated with

GSW

All

Bounded-Arity

Circuits

Bounded

poly-depth

circuits

Single Selecitve under

LWE in ROM,

assuming secure

Multi-Key FHE

Multi-Attribute

“pure” ABFHE

from Chapter 7

All Poly-sized All Poly-sized Multi Selective -

assuming indis-

tinguishability

obfuscation

Table 2.3: Attribute Based Homomorphic Encryption Schemes
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Chapter 3

Characterization of

Attribute-Based Homomorphic

Encryption

3.1 Overview

As described in the previous chapter, there are two primary, complimentary forms of

attribute based encryption (ABE): Key-Policy ABE (KP-ABE) and Ciphertext-Policy

ABE (CP-ABE) in which attributes and policies are reversed. The definitions and results

of this thesis are not affected by replacing one form with the other (swapping attributes

and access policies). For ease of exposition, we focus on the KP-ABE formulation ∗,

since this better fits with the usage scenarios we have in mind.

Let us briefly recall the definition of key-policy attribute based encryption (KP-ABE)

from the previous chapter. A trusted authority (TA) generates public parameters and a

master secret key. It uses its master secret key to generate secret keys for access policies.

Alice encrypts her data, using the public parameters, under an “attribute” of her choice

∗A generalization of both forms is described in Section 2.2.2.
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in some designated set of “attributes”. An “attribute” serves as a descriptor for the data

she is encrypting. Suppose the TA issues a secret key for some access policy to Bob.

This access policy essentially describes which attributes he is authorized to access. Bob

can decrypt Alice’s ciphertext if its associated “attribute” satisfies his access policy.

Now let us formally model the core problem addressed by this thesis. Let F be a

set of valid access policies which accept or reject members of a set of attributes A. An

access policy f ∈ F is represented as a predicate A → {0, 1}. So we say an attribute

a ∈ A satisfies a policy f ∈ F if and only if f(a) = 1. Access policies are associated with

certain authorized parties in the system, which we call receivers. A trusted authority

(TA) is responsible for verifying a user’s credentials and forming an access policy based

thereon. In addition, the TA binds an access policy to a user by issuing a secret key for

that policy to the user. Authentication is required to achieve this, but this is outside the

scope of our system model. It is assumed that a perfectly secure channel exists between

the TA and a user, and there is a means for the user to authenticate herself to the TA.

We also assume that the TA is not always online. Every party is assumed to have a

copy of the public parameters that the TA publishes. This is a once-off occurrence that

happens on initialization / deployment of the system. Once a number of users (potential

receivers) have been issued their secret keys, we may assume that the TA is offline for a

period of time. To be more precise, the remaining phases of the protocol - encryption,

evaluation and decryption - can be carried out without interaction with the TA.

Our goal is to facilitate joint computation on encrypted inputs contributed by mul-

tiple independent parties, who may be unaware of each other. These parties are termed

senders. Let n be the number of senders. Each sender Si has the liberty to encrypt her

input data µi under an independently-chosen attribute ai ∈ A. We emphasize that we

model a sender as a stateful entity who encrypts data under one particular attribute. A

party that encrypts data under multiple attributes is modelled as different senders.

Another entity, termed the evaluator, who has access to the ciphertexts produced by

the senders, can perform a computation C of her choice on any subset of the encrypted
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data without being able to decrypt it. Therefore, the evaluator can obtain a result

µ′ = C(µ1, . . . , µn) of the computation in encrypted form. A ciphertext that encrypts

the result of an evaluation is referred to as an evaluated ciphertext.

Intuitively, one would expect that the result of a joint computation be decryptable

by an entity with an access policy that satisfies all the attributes associated with its

inputs. More precisely, one would expect decryption to succeed if a receiver holds a

secret key for a policy f ∈ F such that f(a1) = · · · = f(an) = 1.

We make the assumption that the length of all attributes in A is bounded by some

fixed polynomial in the security parameter of the scheme. This assumption simplifies the

presentation but does not constrain the scope of our definitions - it is straightforward to

generalize the definitions to handle variable-length attributes.

We consider two basic settings that are interesting special cases of the above system.

These two settings are informally described as follows:

1. (multi-encryptor): Evaluation supports ciphertexts with different attributes, but

the number of senders n is upper limited by a parameter N (specified when gen-

erating the public parameters). The size of an evaluated ciphertext is allowed to

depend polynomially on n.

2. (multi-attribute): Evaluation supports ciphertexts with different attributes, as

long as the number of distinct attributes d is upper limited by a parameter D that

is set a priori. The size of an evaluated ciphertext is allowed to depend polynomially

on d . However, no limit is placed on n. Note the single-attribute setting is a special

case with D = 1.

To summarize the two settings by their limitations: multi-encryptor limits the number

of senders (i.e. encryptors) (and in turn, the number of distinct attributes); and multi-

attribute limits the number of distinct attributes.

The most powerful setting is the multi-attribute setting. It allows an unbounded

number of independent senders to contribute data, provided the number of distinct
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attributes chosen is below some limit. Such a limit is also inherent in the multi-encryptor

setting by virtue of the fact that the number of senders is limited.

Concretely, suppose we have n senders whose data sets are associated with one of

d ≤ n attributes from a set {a1, . . . , ad } ⊂ A. Consider an “instantiation” MA of the

multi-attribute setting with parameter D ≥ d , along with an “instantiation” ME of the

multi-encryptor setting with parameter N ≥ n. So by this choice of parameters, we

have that both systems accommodate evaluation on the sender’s data sets. Let cMA and

cME denote the evaluated ciphertext computed by the evaluator in the case of MA and

ME respectively. It follows that |cMA| depends on d and |cME| depends on N . The most

conservative setting of parameters to accommodate the above scenario is D = d and

N = n. But n ≥ d , so the ciphertext size in MA is at least as (asymptotically) efficient

as the ciphertext size in ME.

The maximally expected D is always less than or equal to the maximally expected

N , which highlights the greater power afforded by a multi-attribute system. However

the main argument for the greater power afforded by a multi-attribute system is the

fact that such a system can be used to generically construct a multi-encryptor system.

The converse does not hold. This reduction gives us reason to explore the possibility

of a multi-encryptor system because an impossibility result for multi-encryptor implies

impossibility of multi-attribute.

Definition 3.1.1 (Degree of composition). Let c1, . . . , c` be input ciphertexts to an

evaluation. Each ciphertext ci is associated with an attribute ai ∈ A. The degree of

composition of the evaluation is the number of distinct attributes among the ai; that

is, the cardinality of the set |{a1, . . . , a`}|.

We use the symbol d to denote the degree of composition. When the context is

unambiguous, the term is abbreviated to degree. We use the symbol D to denote the

maximum degree of composition supported by a particular system.

In this thesis, we chiefly focus on the multi-attribute setting as opposed to the multi-
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encryptor setting. However, we give a construction of a multi-encryptor scheme in

Appendix E. This construction is more practical than the multi-attribute schemes put

forward in this thesis when there is a small number of independent senders; implementa-

tion aspects are discussed in Appendix E. The drawback of the multi-encryptor setting is

that there is a bound on the number of senders, so this limits the applications it is suited

for. We refer the reader to Appendix E for more information on the multi-encryptor

setting.

3.1.1 Models of Access Control for Decryption

A model of access control for decryption specifies how decryption of an evaluated ci-

phertext is to be performed. Consider an evaluated ciphertext c′ associated with d

attributes a1, . . . , ad ∈ A. There are two primary models of decryption, each with dif-

ferent strengths and weaknesses. Both models will be considered in turn.

3.1.1.1 Atomic Access

The intended semantics of this model is that a user should only be able to decrypt an

evaluated ciphertext c′ if she has a secret key for a policy f that satisfies all d attributes

a1, . . . , ad . In other words, policies are enforced in an “all or nothing” manner. So

in order to decrypt a ciphertext c′, the decryptor needs a secret key for a policy f

with f(a1) = · · · = f(ad ) = 1. Furthermore, it captures the natural requirement that a

decryptor be authorized completely to access data associated with a particular attribute.

3.1.1.2 Non-Atomic Access - Collaborative Decryption

The interpretation in this model is that a group of users can pool together their secret

keys to decrypt a ciphertext c′. In other words, there may not be a single f ∈ F that

satisfies all d attributes (or no user holds a secret key for such an f), but the users may

share secret keys for a set of policies that “covers all” d attributes. In other words,

suppose the group of users have (between them) secret keys for policies f1, . . . , fk ∈ F.
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In this model, they can decrypt c′ if and only if for every i ∈ [d ], there exists a j ∈ [k ]

such that fj(ai) = 1.

How is decryption performed? There are a few possible approaches:

1. Every user in the group shares their secret keys with each other, and all users can

decrypt. However, this violates the principle of least privilege and gives users in

the group access to data they might not have been explicitly authorized to access.

2. Perform decryption collaboratively using a multi-party computation (MPC) pro-

tocol. This approach has been suggested in other works including [135]. The

advantage of this approach is that it does not leak any party’s secret key to the

other parties.

3. It is possible that a user has been issued secret keys for several policies. For

example: ABE for disjunctive policies can be achieved with an IBE scheme where

the TA issues secret keys for different identities (treated as “attributes”) to the

same user.

4. Collaborative decryption subsumes the functionality of the atomic model i.e. a

user with a single policy f satisfying all d attributes can still decrypt on her own.

Our syntax for attribute based homomomorphic encryption (ABHE) presented in the

next section generalizes both models. We do this by parameterizing an ABHE scheme

with an integer K ∈ [D], which specifies the maximum number of keys that can be passed

to the decryption algorithm. The setting K = 1 specifies the atomic model whereas the

setting K = D specifies the collaborative model. Note that this is only a syntactic rule,

it does not pertain to enforcing the security property of either model. Our “default”

model, assumed implicitly without further qualification, is the collaborative model. This

is for several reasons, which we will enumerate now:

• In the identity-based setting, collaborative decryption is necessary. In this context,

a single f is satisfied by only one attribute (i.e. identity). Suppose an evaluation is
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performed on ciphertexts with different identities to yield an evaluated ciphertext

c′. Clearly, there is no single secret key that is sufficient to decrypt c′, since each

secret key corresponds to exactly one identity. Because IBE is a special case of

ABE, and very important in its own right, we want to ensure we allow multi-

identity evaluation.

• As noted above, the collaborative model subsumes the functionality of the atomic

model. The greater flexibility of permitting multiple users to collaboratively de-

crypt (such as via MPC) invites more applications.

• The security property in the atomic model is not useful if the group of parties gain

access to the input ciphertexts and know the circuit that was evaluated, since in

this way, they can decrypt the input ciphertexts and compute the result themselves.

3.2 Attribute Based Homomorphic Encryption

Recall the definition of ABE in Chapter 2. An ABE scheme with message space P,

attribute space A and class of supported access policies F is a tuple of probabilistic

polynomial time (PPT) algorithms (Setup,KeyGen,Encrypt,Decrypt).

Definition 3.2.1. A (Key-Policy) Attribute-Based Homomorphic Encryption (ABHE)

scheme E(D,K ) for an integer D > 0 and an integer K ∈ [D] is defined with respect to

a message space P, an attribute space A, a class of access policies F ⊆ A → {0, 1},

and a class of circuits C ⊆ P∗ → P. An ABHE scheme is a tuple of PPT algorithms

(Setup,KeyGen,Encrypt,Decrypt,Eval) where Setup, KeyGen, Encrypt are defined equiv-

alently to KP-ABE. We denote by C the ciphertext space. The decryption algorithm

Decrypt and evaluation algorithm Eval are defined as follows:

• Decrypt(〈skf1 , . . . , skfk 〉, c): On input a sequence of k ≤ K secret keys for policies

f1, . . . , fk ∈ F and a ciphertext c, output a plaintext µ′ ∈ P iff every attribute

associated with c is satisfied by at least one of the fi; output ⊥ otherwise.
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• Eval(PP, C, c1, . . . , c`): On input public parameters PP, a circuit C ∈ C and ci-

phertexts c1, . . . , c` ∈ C, output an evaluated ciphertext c′ ∈ C.

More precisely, Eval is required to satisfy the following properties:

• Over all choices of (PP,MSK) ← Setup(1λ), C : P` → P ∈ C, every d ≤ D,

a1, . . . , a` ∈ A s.t |{a1, . . . , a`}| = d , µ1, . . . , µ` ∈ P, ci ← Encrypt(PP, ai, µi) for

i ∈ [`], and c′ ← Eval(PP, C, c1, . . . , c`):

– Correctness

Decrypt(〈skf1 , . . . , skfk 〉, c
′) = C(µ1, . . . , µ`) iff ∀i ∈ [d ] ∃j ∈ [k ] fj(ai) = 1

(3.2.1)

for any k ∈ [K ], any f1, . . . , fk ∈ F, and any skfj ← KeyGen(MSK, fj) for

j ∈ [k ].

– Compactness There exists a fixed polynomial s(·, ·) for the scheme such that

|c′| ≤ s(λ, d ). (3.2.2)

The complexity of all algorithms may depend on D. Furthermore, the size of freshly

encrypted ciphertexts, the size of the public parameters and the size of secret keys may

depend on D. On the other hand, the size of the evaluated ciphertext c′ must remain

independent of D (along with the size of the circuit C), but it may depend on the actual

number of distinct attributes, d , used in the evaluation. Note that single-attribute

ABHE is the special case where D = 1 i.e. evaluation is correct only for ciphertexts

associated with the same attribute. As mentioned earlier, K = 1 represents the atomic

model of decryption whereas K = D represents the collaborative model. When the

parameter K is omitted, it can be assumed that K = D; that is, the notation E(D) is

shorthand for E(D,D).

Definition 3.2.2. Multi-Attribute ABHE (MA-ABHE) is a primitive with the same

syntax as ABHE except that its Setup algorithm takes an additional input D > 0, which is
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the maximum degree of composition to support. An instance of MA-ABHE can be viewed

as a family of ABHE schemes {E(D) = (Setup,KeyGen,Encrypt,Decrypt,Eval)}D>0.

Remark In the constructions considered in this work, A consists of attributes of fixed

length. However the above definition is easily generalized to capture variable-length

attributes, by letting |c′| grow with the total length of the d distinct attributes.

A concrete ABHE scheme is characterized by three facets: 1). its supported com-

putations (i.e. the class of circuits C); 2). its supported access policies (the class of

access policies F); and 3). its supported composition defined by its maximum degree of

composition, D.

3.3 Security Definitions

3.3.1 Semantic Security

The semantic security definition for ABHE is the same as that for ABE, which is de-

scribed in Section 2.2, except that the adversary has access to the Eval algorithm as

well. To recap, there are two definitions of semantic security for ABE: selective and

adaptive security. In the selective security game, the adversary chooses the attribute to

attack before receiving the public parameters whereas in the adaptive game, the adver-

sary chooses its target attribute after receiving the public parameters. We denote the

selective definition by IND-sel-CPA and the adaptive definition by IND-AD-CPA. When

we discuss the special case of IBE, for consistency with the literature, we denote the

selective and adaptive variants in the IBE context by IND-sID-CPA and IND-ID-CPA

respectively.

3.3.2 Simulation Model of Evaluation

Let D and K ≤ D be fixed parameters denoting the maximum degree of composition and

the maximum number of keys passed to the decryption algorithm respectively. Consider
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ciphertexts c1, . . . , c` encrypted under attributes a1, . . . , a` respectively. We expect that

a ciphertext c′ resulting from an evaluation on c1, . . . , c` be decryptable by a set of

policies {fi}i∈[k ] with k ∈ [K ] if the following two conditions are satisfied: (1). the

degree of composition d is less than D (i.e. d := |{a1, . . . , a`}| ≤ D) - for convenience

we re-label the d distinct attributes as a1, . . . , ad ; and (2). for every i ∈ [d ], there exists

a j ∈ [k ] with fj(ai) = 1.

Ideally a user who does not have keys for such a set of policies {fi}i∈[k ] should

not learn anything about c′ except that it is associated with the attributes a1, . . . , ad .

This implies that such a user should not be able to efficiently decide whether c′ was

produced from c1, . . . , c` or an alternative sequence of ciphertexts d1, . . . , d`′ with the

same collection of distinct attributes a1, . . . , ad .

Definition 3.3.1 (EVAL-SIM Security). Let F ⊆ F be a set of policies, and let A ⊆ A

be a set of attributes. For convenience, we define the predicate

compat(F,A) =


1 if ∃a ∈ A ∀f ∈ F f(a) = 0

0 otherwise .

Let E be an ABHE scheme with parameters D and K . We define the following

experiments for a pair of PPT adversarial algorithms A = (A1,A2) and a PPT algorithm

S.

• ExpREAL
E,A (λ) (Real World):

1. (PP,MSK)← E .Setup(1λ).

2. (C, (a1, µ1), . . . , (a`, µ`), st)← A
E.KeyGen(MSK,·)
1 (PP).

3. Let F be the set of policies queried by A1.

4. Let A := {a1, . . . , ad } be the distinct attributes in the collection a1, . . . , a`.

5. Assert d ≤ D and compat(F,A) = 1; otherwise output a random bit and

abort.

71



6. cj ← E .Encrypt(PP, aj , µj) for j ∈ [`].

7. c′ ← E .Eval(PP, C, c1, . . . , c`).

8. b← AO(MSK,·)
2 (st, c′, c1, . . . , c`)

9. Output b.

• ExpIDEAL
E,A,S (λ) (Ideal World):

1. (PP,MSK)← E .Setup(1λ).

2. (C, (a1, µ1), . . . , (a`, µ`), st)← A
E.KeyGen(MSK,·)
1 (PP).

3. Let F be the set of policies queried by A1.

4. Let A := {a1, . . . , ad } be the distinct attributes in the collection a1, . . . , a`.

5. Assert d ≤ D and compat(F,A) = 1; otherwise output a random bit and

abort.

6. cj ← E .Encrypt(PP, aj , µj) for j ∈ [`].

7. c′ ← S(PP, C,A).

8. b← AO(MSK,·)
2 (st, c′, c1, . . . , c`)

9. Output b.

where O(MSK, ·) is defined as:

• O(MSK, f) :

1. If compat(F ∪ {f}, A) = 1: set F ← F ∪ {f} and output E .KeyGen(MSK, f).

2. Else output ⊥.

Then E is said to be EVAL-SIM-secure if there exists a PPT simulator S such that for

every pair of PPT algorithms A := (A1,A2), it holds that

|Pr[ExpREAL
E,A → 1]− Pr[ExpIDEAL

E,A,S → 1]| < negl(λ).
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Note that the above definition relates to adaptive security. For selective security,

the adversary must choose the attributes before receiving the public parameters. As

a result, in the modified definition, A consists of three PPT algorithms (A1,A2,A3).

Furthermore, A1 outputs a set of d ≤ D attributes A := {a1, . . . , ad }; A2 receives PP

and outputs a circuit C along with a sequence of ` pairs (µi, ai) for i ∈ [`] where µi ∈ P

and ai ∈ A. Finally, A3 is defined equivalently to A2 in the above definition. We denote

the selective variant by sel-EVAL-SIM.

An even stronger requirement is attribute privacy; in this case, the user without a

satisfactory set of policies {fi}i∈[k ] only learns the degree of composition, d , from c′ and

not the actual attributes. The only change to the above definition to capture this is by

passing d to the simulator S instead of A. We denote this variant by ANON-EVAL-SIM.
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Chapter 4

Attribute-Based

Group-Homomorphic Encryption

The primary subclasses of homomorphic encryption are group homomorphic encryption

(GHE) and fully homomorphic encryption (FHE). In a nutshell, a public key encryption

scheme is said to be group homomorphic if its decryption algorithm is a group homo-

morphism [18]. The notion of GHE was characterized by Armknecht et al. [18], and in

Chapter 2 we reviewed their formal definition. Although GHE only permits evaluation

of a single algebraic operation, it is a very powerful primitive for the following reasons:

1. It is used as a building block in protocols for Private Information Retrieval [129],

Electronic Voting [29, 67–69, 74], Oblivious Polynomial Evaluation [148], Private

Outsourced Computation [166] and the Millionaire’s Problem [82].

2. FHE is currently impractical for many applications, and even if it were to be-

come more practical, it may add unnecessary overhead, especially in applications

that only require a single algebraic operation. An example is data aggregation,

illustrated by our wireless sensor network scenario in Chapter 1.
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To reap the benefits of cryptographic access control in the applications where (public-

key) GHE is employed, it is desirable to consider attribute-based GHE. As an example,

consider Private Information Retrieval (PIR) [58]. PIR addresses the following problem.

Suppose there is a database D with n items x1, . . . , xn. Suppose a user wishes to query

D to obtain item xi in such a way that i ∈ [n] remains private from D. A trivial solution

is for D to send back the whole database, but this requires linear communication (in n).

Hence, PIR is the problem of privately querying an item from a database with sublinear

communication. PIR has been realized from GHE [129]. Now consider the case where

the sender and receiver are different parties. Furthermore, the intended receiver may

not be a known independent party with a public key, but rather one or more parties in

an attribute-based infrastructure whose policies fulfill an attribute chosen by the sender

that describes the data. In terms of our running WSN scenario, suppose a base station

B queries a sensor node S for a particular reading corresponding to a specified time

interval. In the event of S being compromised, B wishes that the query remain hidden

from S; for example: interest in specific time intervals may be sensitive. Other nodes

(such as other base stations) that overhear S’s response might also be interested in the

reading. Caching the reading when they receive it cuts down on communication. To allow

only authorized nodes to access the reading, B encrypts the query with an appropriate

attribute (e.g: (type := MOISTURE, region := R1)). These requirements can be satisfied

by using the PIR protocol from [129] (which uses GHE) with an attribute-based GHE

scheme instead of a public-key GHE scheme.

4.1 Formal Definition

In this section, we present a formal definition of attribute-based GHE (ABGHE), ex-

tending the definition of GHE by Armknecht et al [18].

Definition 4.1.1 (Attribute Based Group Homomorphic Encryption (ABGHE), Adapted

from Definition 1 in [18]). Let E = (G,K,E,D) be an ABE scheme with message space
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P, attribute space A, ciphertext space Ĉ and class of predicates F. The scheme E is group

homomorphic if for every (PP,MSK) ← G(1κ), every f ∈ F : supp(f) 6= ∅, and every

skf ← K(MSK, f), the message space (P, ·) is a non-trivial group, and there is a binary

operation ∗ : Ĉ2 → Ĉ such that the following properties are satisfied for the restricted

ciphertext space Ĉf = {c ∈ Ĉ : Dskf (c) 6= ⊥}:

GH.1: The set of all encryptions Cf = {c | c ← E(PP, a,m), a ∈ supp(f),m ∈

P} ⊆ Ĉf is a non-trivial group with respect to the operation ∗.

GH.2: The restricted decryption D∗skf := Dskf |Cf is surjective

and ∀c, c′ ∈ Cf Dskf (c ∗ c′) = Dskf (c) ·Dskf (c′).

Let us consider Definition 4.1.1 in more detail. Firstly observe that it can be viewed

as a special case of ABHE as defined in Definition 3.2.1 from the previous chapter.

Secondly, it follows the atomic model of decryption i.e. K = 1. Let f ∈ F be any policy

that is satisfied by at least one attribute i.e. supp(f) 6= ∅. Furthermore, Dskf is the

decryption function indexed by some secret key skf for f . We restrict ourselves to the

set of ciphertexts Ĉf ∈ Ĉ that decrypt to a plaintext under Dskf . In other words, this is

the set of ciphertexts that do not yield the failure symbol ⊥ on decryption with Dskf .

Now the set of honest encryptions with any attribute satisfying f (let this be Cf ) should

be a subset of Ĉf . This is captured by GH.1 in Definition 4.1.1. However, GH.1 makes

an even stronger demand. It requires that Cf be a non-trivial group with respect to the

operation ∗. The homomorphism is described by GH.2. In our case, it means that for

any honestly generated ciphertexts c, c′ ∈ Cf , we have Dskf (c ∗ c′) = Dskf (c) ·Dskf (c′).

Is Ĉf = Cf? This is not always the case, and our identity-based XOR-homomorphic

construction later exemplifies this. Let skf be any secret key for a policy f . Suppose there

is a decision function δf : Ĉ → {0, 1} embedded in skf that can determine whether an

element of Ĉ is an honest encryption that is decryptable by f i.e. δf (c) = 1 ⇐⇒ c ∈ Cf .

In this case, the decryption function Dskf simply outputs ⊥ on input c if and only if
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δf (c) = 0; it outputs the recovered plaintext otherwise. As a result, we then indeed

have that Ĉf = Cf . Armknecht et al. introduced the decision function in their definition

of GHE for the public-key setting in order to assist their characterization of IND-CCA1

security. However, an efficient decision function does not always exist in the ABE setting.

The reason for this is that the decryptor is only given partial secret key information

sufficient for her policy f , but other information may remain computationally hidden

from her without the master secret key. Therefore, a decryptor may not be able to

efficiently tell whether a ciphertext c is in Cf . To extend Armknecht et al.’s results, we

can introduce an additional condition that requires Ĉf and Cf to be computationally

indistinguishable to any PPT adversary with oracle access to K(MSK, ·). Later in the

chapter, we show that this condition holds for our XOR-homomorphic scheme. In fact,

we also show that (Ĉf , ∗) is itself a group in our scheme.

4.2 Properties

In this section we will establish some properties about ABGHE schemes. To help us

in this task, we first define a particular ABGHE scheme which we make reference to

throughout the section. Let E = (G,K,E,D) be a ABGHE scheme satisfying Defini-

tion 4.1.1 with message space (P, ·), attribute space A, access policies F, ciphertext space

Ĉ and binary operation ∗ : Ĉ × Ĉ → Ĉ. Fix any (PP,MSK) ← G(1λ). Note that the

identity element of (P, ·) is written as 1 ∈ P since we use multiplicative notation. We

assume that F is free of any degenerate policies; that is, policies f with f(a) = 0 ∀a ∈ A.

4.2.1 Partition of Access Policies

A fundamental property of an ABGHE scheme is that its class of access policies F can

be partitioned into equivalence classes via a natural relation ∼. The relation is defined

for any f, g ∈ F as

f ∼ g iff supp(f) ∩ supp(g) 6= ∅.

77



Now ∼ is clearly reflexive and symmetric, but it is not necessarily transitive in the case

of an arbitrary ABHE scheme. However if the scheme is group homomorphic, i.e. it

satisfies Definition 4.1.1, then ∼ is also transitive, and hence an equivalence relation.

We now show this formally.

Lemma 4.2.1 (transitivity of ∼). Let f1, f2, g ∈ F such that supp(f1)∩ supp(g) 6= ∅ and

supp(f2) ∩ supp(g) 6= ∅. Then supp(f1) ∩ supp(f2) 6= ∅.

The proof of Lemma 4.2.1 is given in Appendix B.

Each equivalence class in F/ ∼ consists of policies linked together because their

support sets share a common attribute. The equivalence classes in F/ ∼ correspond to

disjoint sets of attributes. For example, in the case of IBE, we have |F/ ∼ | = |A|. In

contrast, for a more complex class of access policies, we may have |F/ ∼ | = 1. This is

particularly true when there is an access policy that is satisfied by all attributes. The

following corollary follows immediately from Lemma 4.2.1.

Corollary 4.2.1. If the tautology predicate > (i.e. >(a) = 1 ∀a ∈ A) is in F, then there

exists an attribute a ∈ A such that f(a) = 1 ∀f ∈ F.

The corollary tells us that if there is a policy that is satisfied by every attribute, then

there is at least one attribute a that satisfies every policy.

Multiplying a ciphertext c by a ciphertext created with attribute a preserves the

access restrictions of the ciphertext c. In other words, suppose d is an encryption under

attribute a and one obtains e = c ∗ d, then any policy f that can decrypt c can also

decrypt e. This follows immediately from GH.2. Thus encryptions under attribute a can

be seen as “neutral”.

4.2.2 Subgroup Membership Problem

Armknecht et al. characterize the semantic security of (public-key) GHE as a subgroup

membership problem, which can be generalized easily to the attribute-based setting. To

78



describe this, we first establish some notation. For any attribute a ∈ A and any plaintext

µ ∈ P, we define the set C(a)
µ as the image of EPP(a, µ) i.e. the set of legally generated

encryptions of µ under attribute a. In addition, we define C(a) =
⋃
µ∈P C

(a)
µ . Recall that

we are using multiplicative notation for groups and that we denote the identity element

in (P, ·) by 1 ∈ P.

Suppose the adversary’s target attribute is a∗ ∈ A. In the subgroup membership

problem (SMP), he is given an element c∗ ∈ C(a∗) which is sampled in one of two

ways: (1). the element c∗ is uniformly sampled from C(a∗); or (2). the element c∗ is

uniformly sampled from C(a∗)
1 . The goal is to distinguish both of these distributions

given oracle access to KMSK conditioned on the fact that the adversary cannot query an

f ∈ F with f(a∗) = 1. More precisely, we assume the hardness of a family of subgroup

membership problems {SMPa∗}a∗∈A. It can be shown that solving a problem in this

family is equivalent to attacking the semantic security of the scheme. For more details,

we refer the reader to [18] wherein Armknecht et al. characterize the security of public-

key GHE as a subgroup membership problem; the characterization holds analogously for

ABGHE.

4.2.3 Generic Transformation for Multiple Attributes

As mentioned earlier, an ABGHE scheme natively follows the atomic model of decryption

i.e. K = 1. It is possible to construct a related scheme E ′ = (G′,K ′, E′, D′) that is group

homomorphic for (P, ·), but with D = K = |A|. Technically E ′ is not an ABGHE since

it doesn’t satisfy Definition 4.1.1. Instead E ′ is a group homomorphic scheme that

follows the collaborative model of decryption. Its salient feature is that ciphertexts grow

linearly with the degree of composition. The transformation is presented in Section B.2

of Appendix B. This generic transformation for multiple attributes is useful for a variety

of reasons:

• In the identity-based setting, it allows us to do multi-identity evaluation.
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• In cases where there is no single policy that decrypts all d attributes (or no party

has a secret key for such a policy), this gives us a way to do collaborative decryp-

tion.

• The resulting scheme E ′ serves as a good example of multi-attribute ABHE, and

the only example we are aware of that has D = |A|.

4.2.4 Additively Homomorphic “Sub-Schemes”

It is a well-known that a scheme with a multiplicative homomorphism can be transformed

into one with an additive homomorphism, where the addition takes place in the exponent,

and a discrete logarithm problem must be solved to recover the result. This gives rise

to the following theorem, which holds true in the public-key setting as well (a fortiori

because public-key HE is a special case of ABHE):

Theorem 4.2.1. Let g ∈ P be a generator of (P, ·). For any positive integer M =

poly(λ) with M | |P|, there is an additively homomorphic ABGHE scheme with plaintext

group (ZM ,+).

Proof. We define a new scheme E ′ whose setup and key generation algorithms are the

same as E . The element h := g|MS|/M is a generator for a subgroup of P of order M . One

can define the encryption algorithm E′ as follows: on input a message µ ∈ {0, . . . ,M−1}

and attribute a, compute c ← EPP(a, hµ) and output c. The image of E′PP(a, ·) with

domain ZM is a subgroup of EPP(a, ·) with domain P with respect to operation ∗. This

satisfies GH.1. The decryption algorithm is defined as D′skf (c) = logh(Dskf (c)). Let c

be an encryption of x ∈ ZM and c′ be an encryption of y ∈ ZM . These elements can

respectively be viewed as encryptions in the scheme E of hx ∈ P and hy ∈ P respectively.

Because D satisfies GH.2, we have

D′skf (c∗c′) = loghDskf (c ∗ c′) = logh (D′skf (c) ·D′skf (c′)) = logh (hx · hy) = logh (hx+y) = x+y.

Therefore, the scheme also satisfies GH.2.
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A related fact, and one that shows up more frequently, is when M does not divide

the group order |P| and is instead some polynomially sized bound. In this case, we get

a bounded (aka “quasi”) additively homomorphic scheme, but it is not group homomor-

phic in the sense of Definition 4.1.1 since one cannot perform an unbounded number of

homomorphic operations.

Günther et al. [114] modified the Boneh-Franklin IBE [38] so that it is additively

homomorphic in a bounded sense (i.e. it is additively homomorphic for ZM for some

M that does not divide the order of the group (P, ·)). In fact, we could interpret the

construction of Günther et al. as first transforming Boneh-Franklin into an ABGHE

with a multiplicative homomorphism and then applying the above transformation to

yield a bounded additive homomorphism. The same transformation can be applied to

other pairings-based IBE schemes including [91, 176]. In the next section, we look at

existing ABGHE schemes that are multiplicatively homomorphic. We recommend that

the reader keep in mind that a bounded additive homomorphism can be obtained from

these schemes via the above transformation.

4.3 Existing ABGHE Schemes (Multiplicatively Homomor-

phic)

As aforementioned, variants of parings-based IBE schemes including [38, 91, 176] are

ABGHE schemes with a multiplicative homomorphism. Furthermore, these can be trans-

formed via the process described in the proof of Theorem 4.2.1 into a scheme with a

bounded additive homomorphism. Günther et al. [114] described such a modification to

the Boneh-Franklin IBE [38] to produce a bounded additively homomorphic scheme.

As we have seen, many pairings-based ABE schemes are multiplicatively homomor-

phic. To illustrate the properties of a concrete ABGHE, we now examine such a con-

struction due to Katz, Sahai and Waters (KSW) [124] (Appendix C); we call this scheme

KSW. The security of KSW relies on non-standard assumptions on bilinear groups, as-
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sumptions that are justified by the authors in the generic group model.

Let m be a product of three “large” primes and let n be a positive integer that is

polynomial in the security parameter. In KSW, an attribute is an n-dimensional vector

over Zm and a predicate (i.e. access policy) also corresponds to an n-dimensional vector

over Zm. For ~v ∈ Znm, a predicate f~v : Znm → {0, 1} is defined by

f~v(~w) =


1 iff 〈~v, ~w〉 = 0

0 otherwise

These predicates are called inner-product predicates.

Roughly speaking, in a ciphertext, all components of its attribute vector ~w ∈ Znm
(which represent the sub-attributes) are blinded by the same uniformly random “blind-

ing” element b ∈ Zm. The decryption algorithm multiplies each component by the

corresponding component in the predicate vector, and the blinding element b is elimi-

nated when the inner product evaluates to zero with all but negligible probability, which

allows decryption to proceed.

Let ~c1 and ~c2 be ciphertexts with attribute vectors ~a1 ∈ Znm and ~a2 ∈ Znm respec-

tively. It can be easily shown that the pairwise product ~c′ = ~c1∗ ~c2 of ~c1 and ~c2 produces

a ciphertext that is associated with both ~a1 and ~a2 in a somewhat “isolated” way. The

effect this has is conjunctive. So a predicate vector ~v has to satisfy 〈~v, ~a1〉 = 0 and

〈~v, ~a2〉 = 0 for decryption of ~c′ to succeed (except with negligible probability). Further-

more, the effect on the underlying plaintexts is multiplicative (in a group of order m).

Therefore, KSW is an ABGHE scheme with a multiplicative homomorphism. Another

property that KSW satisfies is attribute privacy - the attribute vector is hidden by the

ciphertext.

KSW also helps us illustrate the aforementioned properties of ABGHE. Consider

Corollary 4.2.1, which tells us that if a “tautology” predicate > (i.e. a predicate that

holds true for every attribute) is in the class of supported policies, then there is an

attribute a ∈ A that satisfies all policies. In the case of KSW, such a predicate > is
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given by the zero vector. Accordingly, the attribute a is also given by the zero vector.

On a technical note the ciphertexts in KSW are elements of the product group

Ĉ := GT × G2n+1 where G and GT are groups of order m. The operation ∗ on Ĉ

corresponds to the operation of this product group. The plaintext group is (P := GT , ·).

The identity element of the ciphertext space Ĉ is 1Ĉ := (1GT , 1G, . . . , 1G) ∈ Ĉ where 1GT

is the identity element of GT and 1G is the identity element of G. Note that the identity

element 1Ĉ of Ĉ is an encryption of 1 ∈ P under a, which is the zero attribute vector in

KSW.

4.4 Additively Homomorphic Identity Based Encryption

As discussed in the previous section, there exist multiplicatively homomorphic ABGHE

schemes, and furthermore, as we have seen, these can be converted into bounded addi-

tively homomorphic schemes. However, we are not aware of any (unbounded) additively

homomorphic ABGHE. In this section, we present the first such scheme. Our construc-

tion is XOR-homomorphic (supports addition modulo 2) but it can be generalized to

support addition modulo M for small M , as we show in Section 4.4.8. Our construction

is identity-based and its security is based on the quadratic residuosity problem. There-

fore, it is similar in many respects to the Goldwasser-Micali (GM) cryptosystem [106],

which is also well-known to be XOR-homomorphic. Indeed, the GM scheme has found

many practical applications due to its homomorphic property. In Section 4.4.9, we

show how many of these applications benefit from an XOR-homomorphic scheme in the

identity-based setting.

Our construction derives from the IBE scheme due to Cocks [66] which has a security

reduction from the quadratic residuosity problem. To the best of our knowledge, a

homomorphic variant has not been explored to date.
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4.4.1 Quadratic Residues and Jacobi Symbols

Let m be an integer. A quadratic residue in the residue ring Zm is an integer x such

that x ≡ y2 mod m for some y ∈ Zm. The set of quadratic residues in Zm is denoted

QR(m). If m is prime, it is easy to determine whether any x ∈ Zm is a quadratic residue.

If m is an odd prime number, we can define the Legendre symbol as a function of any

integer x ∈ Z with respect to m as

(
x

m

)
=


1 if x ∈ QR(m)

−1 if x 6≡ 0 mod m and x /∈ QR(m)

0 if x ≡ 0 mod m

.

The above function can be generalized to positive odd moduli M = mα1
1 . . .mαk

k where

m1, . . . ,mk are prime, and α1, . . . , αk are positive integers. The generalization is called

a Jacobi symbol and is defined as(
x

M

)
=

(
x

m1

)α1

· · ·
(
x

mk

)αk
where

(
x

mi

)
denotes the Legendre symbol of x with respect to mi for 1 ≤ i ≤ k. The

subset of ZM with Jacobi symbol +1 is denoted by J(M); that is, J(M) = {x ∈ Z :(
x

M

)
= 1}. Naturally, QR(M) ⊆ J(M).

4.4.2 Quadratic Residuosity Problem

Let N be a product of two odd primes p and q. The quadratic residuosity problem is

to determine, given input (N, x) where x ∈ J(N), whether or not x ∈ QR(N), and it is

believed to be intractable.

4.4.3 Blum Integers

The schemes in this chapter make use of Blum integers. A Blum integer is a product of

two primes that are both congruent to 3 modulo 4. As a result, we define BlumGen(1λ) as
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a PPT algorithm which takes as input a security parameter λ and outputs two equally-

sized primes p and q, whose lengths depend on λ, such that

p ≡ q ≡ 3 (mod 4).

4.4.4 Cocks Scheme

We define the encoding ν : {0, 1} → {−1, 1} with ν(0) = 1 and ν(1) = −1. Formally, ν

is a group isomorphism between (Z2,+) and ({−1, 1}, ∗). A message bit is mapped to

an element of {−1, 1} via ν (i.e. 0 (1 resp.) is encoded as 1 (-1 resp.)).

Let H : {0, 1}∗ → J(N) be a full-domain hash that sends an identity string id ∈

{0, 1}∗ to an integer in ZN whose Jacobi symbol is +1. A secret key in Cocks’ system

is a Rabin signature for id. What this means is that the secret is the square root of an

integer a ∈ ZN , where a is obtained via H. For a random a, it is a hard problem to find

a square root of a without the factorization of N . To guarantee existential unforgeability

of such signatures, we need to model H as a random oracle in the security proof.

• Cocks.Setup(1λ):

1. Repeat: (p, q)← BlumGen(1λ).

Note that by definition of BlumGen, we have p ≡ q ≡ 3 (mod 4).

2. N ← pq

3. Output (PP := N,MSK := (N, p, q))

• Cocks.KeyGen(MSK, id):

1. Parse MSK as (N, p, q).

2. a← H(id).

3. r ← a
N+5−p−q

8 (mod N).

Therefore, either r2 ≡ a (mod N) or r2 ≡ −a (mod N).
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4. Output skid := (N, id, r)

Remark It is important that this algorithm always output the same square root,

since otherwise N can be factored. To achieve this, one may store the root or

calculate it deterministically as done so above.

• Cocks.Encrypt(PP, id,m):

1. Parse PP as N .

2. a← H(id)

3. Generate t1, t2
$←− Z∗N such that

(
t1
N

)
=

(
t2
N

)
= ν(m) (Recall that ν(m)

maps m ∈ {0, 1} into {−1, 1}).

4. Output ~ψ := (t1 + at−1
1 , t2 − at−1

2 )

• Cocks.Decrypt(skid, ~ψ):

1. Parse ~ψ as (~ψ1, ~ψ2)

2. Parse skid as (N, id, r)

3. a← H(id)

4. If r2 ≡ a (mod N), set d← ~ψ1. Else if r2 ≡ −a (mod N), set d← ~ψ2.

Else output ⊥ and abort.

5. Output ν−1(

(
d+ 2r

N

)
)

The above scheme can be shown to be adaptively secure in the random oracle model

assuming the hardness of the quadratic residuosity problem.

4.4.4.1 Anonymity and Galbraith’s Test

Cocks’ scheme is not anonymous. Boneh et al. [36] report a test due to Galbraith∗

that enables an attacker to distinguish the identity of a ciphertext. This is achieved

∗Reported as emerging from personal communication in [39].
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with overwhelming probability given multiple ciphertexts. It is shown by Ateniese and

Gasti [20] that there is no “better” test for attacking anonymity. Briefly, let a = H(id)

be the public key derived from the identity id. Let c be a ciphertext in the Cocks’

scheme. Galbraith’s test is defined as

GT(a, c,N) =

(
c2 − 4a

N

)
Now if c is a ciphertext encrypted with a, then GT(a, c,N) = +1 with all but negligible

probability. For b ∈ Z∗N such that b 6= a, the value GT(b, c,N) is statistically close

to the uniform distribution on {−1, 1}. Therefore, given multiple ciphertexts, it can

be determined with overwhelming probability whether they correspond to a particular

identity. Hence, this defeats anonymity. We will see later that a generalization of

Galbraith’s test is integral to our construction.

4.4.5 XOR-homomorphic Construction

Recall that a ciphertext in the Cocks scheme consists of two elements in ZN . Thus, we

have

(c, d)← Cocks.Encrypt(PP, id, b) ∈ Z2
N

for some identity id and bit b ∈ {0, 1}. Also recall that only one element is actually

used for decryption depending on whether a := H(id) ∈ QR(N) or −a ∈ QR(N). If the

former holds, it follows that a decryptor has a secret key r satisfying r2 ≡ a (mod N).

Otherwise, a secret key r satisfies r2 ≡ −a (mod N). To simplify the description of the

homomorphic property, we will assume that a ∈ QR(N) and therefore omit the second

“component” d from the ciphertext. In fact, the properties hold analogously for the

second “component” by simply replacing a with −a.

In our homomorphic scheme, each “component” of the ciphertext is represented by

a pair of elements in Z2
N instead of a single element as in the original Cocks scheme. As

mentioned, we will omit the second such pair for the moment. Consider the following

encryption algorithm Ea defined by
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Ea(b : {0, 1}) :

t
$←− Z∗N [ν(b)]

return (t+ at−1, 2) ∈ Z2
N .

Furthermore, define the decryption function Da(~c) = ν−1(c0 + rc1). The homomorphic

operation � : Z2
N × Z2

N → Z2
N is defined as follows:

~c� ~d = (c0d0 + ac1d1, c0d1 + c1d0) (4.4.1)

It is easy to see that Da(~c� ~d) = Da(~c)⊕Da(~d):

Da(~c� ~d) = Da((c0d0 + ac1d1, c0d1 + c1d0))

= ν−1((c0d0 + ac1d1) + r(c0d1 + c1d0))

= ν−1(c0d0 + rc0d1 + rc1d0 + r2c1d1)

= ν−1((c0 + rc1)(d0 + rd1))

= ν−1(c0 + rc1)⊕ ν−1(d0 + rd1)

= Da(~c)⊕Da(~d) (4.4.2)

Let Ra = ZN [x]/(x2− a) be a quotient of the polynomial ring R = ZN [x]. It is more

natural and convenient to view ciphertexts as elements of Ra and the homomorphic

operation as multiplication in Ra. Furthermore, decryption equates to evaluation at the

point r. Thus the homomorphic evaluation of two ciphertext polynomials c(x) and d(x)

is simply e(x) = c(x) ∗ d(x) where ∗ denotes multiplication in Ra. Decryption becomes

ν−1(e(r)). Moreover, Galbraith’s test is generalized straightforwardly to the ring Ra:

GT(a, c(x)) =

(
c2

0 − c2
1a

N

)
.

We now formally describe our variant of the Cocks scheme that supports an XOR homo-

morphism. The Setup and KeyGen algorithms are identical to those of the Cocks system,

which is presented in Section 4.4.4. Consider the following algorithm E that takes an

integer a ∈ J(N) and a plaintext bit m ∈ {0, 1} and outputs an element c(x) ∈ R. This

algorithm is used to compute one “component” of a ciphertext.
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• Algorithm E(a,m):

1. Choose an integer t
$←− Z∗N uniformly such that(

t

N

)
= ν(m).

2. Choose an integer h
$←− ZN uniformly.

3. Compute c(x)← 2hx+ (t+ ah2t−1) ∈ R

4. Repeat steps 1-4 until (t+ ah2t−1) ∈ Z∗N .

5. Output c(x).

With overwhelming probability, (t+ ah2t−1) will be invertible in ZN .

• In addition, we define a decryption algorithm D which takes an integer r ∈ ZN

and a polynomial in R as input, and outputs a bit m ∈ {0, 1}. This is defined as

follows:

Algorithm D(r, c(x)):

1. Compute j =

(
c(r)

N

)
∈ {−1, 0,+1}.

2. If j = 0, output ⊥.

3. Else output ν−1(j) ∈ {0, 1}.

We are now ready to fully specify our XOR-homomorphic scheme, which we call

xhIBE. As mentioned above, we have xhIBE.Setup = Cocks.Setup and xhIBE.KeyGen =

Cocks.KeyGen. The remaining algorithms xhIBE.Encrypt, xhIBE.Decrypt and xhIBE.Add

are defined as follows.

• xhIBE.Encrypt(PP, id,m) :

1. Parse PP as N .

2. a← H(id).
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3. Compute c(x)← E(a,m).

4. Compute d(x)← E(−a,m).

5. Output ~ψ := (c(x), d(x), a).

The third component a is necessary to perform homomorphic operations. See

xhIBE.Add below.

• xhIBE.Decrypt(skid, ~ψ):

1. Parse skid as (N, id, r).

2. Parse ~ψ as (c(x), d(x), a).

3. If r2 ≡ a mod N and GT(a, c(x)) = 1, output D(r, c(x)).

4. Else if r2 ≡ −a mod N and GT(−a, d(x)) = 1, output D(r, d(x)).

5. Else output ⊥.

• xhIBE.Add(PP, ~ψ1, ~ψ2):

1. Parse ~ψ1 as (c1(x), d1(x), a)

2. Parse ~ψ2 as (c2(x), d2(x), a)

3. Output (c1(x) ∗ c2(x) (mod x2 − a), d1(x) ∗R−a d2(x) (mod x2 + a)).

We briefly recall why the scheme is XOR-homomorphic. We will restrict our attention

to the first component of a ciphertext for simplicity, since the situation is analogous for

the second component with respect to −a instead of a. Therefore, we assume that the

secret key for identity id is r ∈ Z∗N such that r2 = a (mod N) where a = H(id). A

plaintext bit encoded as an element of {−1, 1} is recovered from a ciphertext polynomial

c(x) by computing

(
c(r)

N

)
. It is easy to see that

(
c′(r)

N

)
=

(
c1(r)

N

)
·
(
c2(r)

N

)
∈ {−1, 1}

where c′(x) = c1(x)c2(x) (mod x2− a) (which is what is computed in xhIBE.Add). Note

that ({−1, 1}, ∗) and ({0, 1},⊕) are isomorphic.
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For the remainder of this section, we show that xhIBE fulfills the definition of a group

homomorphic scheme, and that it is IND-ID-CPA secure under the quadratic residuosity

assumption in the random oracle model

Let a ∈ J(N). Let Ra = R/(x2 − a). To simplify the presentation of the proofs,

additional notation is needed. This notation is inherited from [20], and generalized to

the ring Ra. Recall the generalization of Galbraith’s test to the ring R as follows.

Definition 4.4.1 (Galbraith’s Test over R). Define Galbraith’s Test for the ring R as

the function GT : ZN ×R→ {−1, 0,+1} given by

GT(a, c(x)) =

(
c2

0 − c2
1a

N

)
.

Note that N is omitted from GT because it is implicit in the description of R.

Define the subset Ga ⊂ Ra as follows:

Ga = {c(x) ∈ Ra : GT(a, c(x)) = 1}.

Therefore, this is the subset of Ra that passes Galbraith’s test. Define the subset Ḡa ⊂

Ra as follows:

Ḡa = {c(x) ∈ Ra : GT(a, c(x)) = −1}.

Correspondingly, this is the subset of Ra that fails Galbraith’s test. Now define the

subset Sa ⊂ Ga†:

Sa = {2hx+ (t+ ah2t−1) ∈ Ga | h ∈ ZN , t, (t+ ah2t−1) ∈ Z∗N}.

The subset Sa is precisely the image of the algorithm E(a, ·) defined earlier. We have

the following lemma:

Lemma 4.4.1.

1. (Ga, ∗) is a multiplicative group in Ra.

†This definition is stricter than its analog in [20] in that all elements are in Ga.
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2. (Sa, ∗) is a subgroup of Ga

Proof. We must show that Ga is closed under ∗. Let c(x), d(x) ∈ Ga, and let e(x) =

c(x) ∗ d(x).

GT(a, e(x)) =

(
e2

0 − ae2
1

N

)
=

(
(c0d0 + ac1d1)2 − a(c0d1 + c1d0)2

N

)
=

(
(c2

0 − ac2
1)(d2

0 − ad2
1)

N

)
=

(
(c2

0 − ac2
1)

N

)(
(d2

0 − ad2
1)

N

)
= GT(a, c(x)) · GT(a, d(x))

= 1

Therefore, e(x) ∈ Ga.

It remains to show that every element of Ga is a unit. Let z = c2
0 − ac2

1 ∈ ZN .

An inverse d1x + d0 of c(x) can be computed by setting d0 = c0
z and d1 = −c1

z if

it holds that z is invertible in ZN . Indeed such a d1x + d0 is in Ga. Now if z is

not invertible in ZN then p|z or q|z, which implies that

(
z

p

)
= 0 or

(
z

q

)
= 0. But

GT(a, c(x)) =

(
z

N

)
=

(
z

p

)(
z

q

)
= 1 since c(x) ∈ Ga. Therefore, z is a unit in ZN , and

c(x) is a unit in Ga.

Finally, to prove (2), note that the members of Sa are exactly the elements c(x) such

that c2
0 − c2

1a is a square, and it is easy to see that this is preserved under ∗ in Ra.

Theorem 4.4.1. xhIBE is a group homomorphic scheme with respect to the group op-

eration of (Z2,+). In other words, xhIBE satisfies Definition 4.1.1.

Proof. Let a = H(id) for any valid identity string id. We first need to show that xhIBE

satisfies GH.1; that is, that the set of valid encryptions under id forms a group. A

ciphertext outputted by xhIBE.Encrypt(PP, id, ·) is of the form (c(x), d(x), a) ∈ Sa ×

S−a × J(N). Recall that by definition Sa and S−a are precisely the image of E(a, ·) and
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E(−a, ·) respectively, which are used by xhIBE.Encrypt to generate c(x) and d(x). By

Lemma 4.4.1, Ga is a group and Sa is a non-trivial subgroup of Ga (the same holds

analogously for G−a and S−a). Therefore, the set of elements Cid := {(c(x), d(x), a) :

c(x) ∈ Sa, d(x) ∈ S−a} forms a group under the operation given by xhIBE.Add (let us

call this �). Note also that � is well-defined for pairs of elements in Ĉ := R×R× J(N).

The surjective homomorphism between Cid and P := (Z2,+) has already been shown

in the correctness derivation in equation 4.4.2. Therefore, the scheme satisfies GH.2.

This completes the proof.

Theorem 4.4.2. xhIBE is IND-ID-CPA secure in the random oracle model under the

quadratic residuosity assumption.

Proof. Let A be an adversary that breaks the IND-ID-CPA security of xhIBE. We use

A to construct an algorithm S to break the IND-ID-CPA security of the Cocks scheme

with the same advantage. S proceeds as follows:

1. Uniformly sample an element h
$←− Z∗N . Receive the public parameters PP from

the challenger C and pass them to A.

2. S answers a query to H for identity id with H ′(id) · h−2 where H ′ is S’s random

oracle. The responses are uniformly distributed in ZN [+1].

3. S answers a key generation query for id with the response K(id) · h−1 where K is

its key generation oracle.

4. When A chooses target identity id∗, S relays id∗ to C. Assume w.l.o.g that H has

been queried for id, and that A has not made a secret key query for id∗. Further

key generation requests are handled subject to the condition that id 6= id∗ for a

requested identity id.

5. Let a = H(id∗). On receiving a challenge ciphertext (c, d) from C, compute c(x)←

2hx + c ∈ R and d(x) ← (2hx + d) ∗ r(x) ∈ R where r(x)
$←− S

(0)
−a and S

(0)
−a is the
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second component of the set of legal encryptions of 0. From corollary ??, d(x)

is uniformly distributed in S
(b)
−a where the ciphertext (c, d) in the Cocks scheme

encrypts the bit b. It follows that (c(x), d(x)) is a perfectly simulated encryption

of b under identity id∗ in xhIBE. Give (c(x), d(x)) to A.

6. Output A’s guess b′.

Since the view of A in an interaction with S is indistinguishable from its view in the

real game, we conclude that the advantage of S is equal to the advantage of A.

4.4.6 Computational Indistinguishability of Sa and Ga

We now show that Sa ≈
C
Ga i.e. Sa and Ga are computationally indistinguishable without

the factorization of N for a ∈ J(N).

Corollary 4.4.1 (Extension of Lemma 2.2 in [20]). The distributions D0 := {(N, a, t+

ah2t−1, 2h) : N ← Setup(1λ), a
$←− J(N), t, h

$←− Z∗N )} and D1 := {(N, a, z0, z1) : N ←

Setup(1λ), a
$←− J(N), z0 + z1x

$←− Ga \ Sa} are indistinguishable assuming the hardness

of the quadratic residuosity problem.

Proof. The corollary follows immediately from Lemma 2.2 in [20] Let A be an efficient

adversary that distinguishes both distributions. Lemma 2.2 in [20] shows that the dis-

tributions d0 := ({(N, a, t + at−1) : N ← Setup(1λ), a
$←− J(N), t} and d1 := {(N, a, c) :

N ← Setup(1λ), a
$←− J(N), c

$←− GT(c, a,N)} are indistinguishable. Given a sample

(N, a, c) of either the distribution d0 or d1, we can construct an algorithm S that uses

A to distinguish between the distributions. The algorithm S generates h
$←− Z∗N and

computes b := h−2a. It passes the element (N, b, c, 2h) to A. The algorithm S aborts

with the output of A. If the sample is from d0, then the input passed to A is sampled

according to D0; otherwise the input passed to A is sampled according to D1. If A can

distinguish D0 and D1 with non-negligible probability, then S can distinguish d0 and d1

with non-negligible probability, which contradicts Lemma 2.2 in [20].
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Recall that the set of all encryptions for some policy f is defined as Cf = {c | c ←

E(PP, a,m), a ∈ supp(f),m ∈ P} ⊆ Ĉf . In the context of IBE, f is an access policy

that holds true for a single attribute i.e. identity. We posed the question the earlier

whether Ĉf (the set of ciphertexts that do not yield ⊥ on decryption with f) is equal

to Cf? Expressing this in terms of IBE, we ask whether Ĉid = Cid where Ĉid is the set of

ciphertexts that do not yield ⊥ on decryption with a secret key for id and Cf is the set

of legally generated ciphertexts under id. Now in the case of our scheme, we have that

Ĉid = Ga and Cid = Sa where a = H(id). Clearly, we have that Ĉid 6= Cid. Moreover, there

is no efficient decision function that can distinguish between an element of Ĉid := Ga and

Cid := Sa without the master secret key (i.e. the factorization of N). This is interesting

because Armknecht et al. [18] include a decision function in their definition of public-

key GHE that decides whether or not a given ciphertext is one that has been legally

generated. They found that such a decision function could be defined for every public-

key GHE scheme. However, our identity-based XOR-homomorphic scheme provides

evidence that such a decision function cannot always exist in the attribute-based world.

4.4.7 Anonymous Variant

The notion of anonymity stems from that of key privacy put forward by Bellare et

al. [24]. An IBE scheme is said to be anonymous if an adversary cannot distinguish

which identity was used to create a ciphertext, even if the adversary gets to choose a

pair of identities to distinguish between. Anonymous IBE is a useful primitive because

it can be used to facilitate searching on encrypted data, to allow anonymous broadcasts

to be made in a network, and to act as a countermeasure against traffic analysis. A

multitude of anonymous IBEs have been constructed based on both pairings and lattices

including [7, 36,38,45].

Anonymous variants of Cocks’ IBE scheme whose security relies on the quadratic

residuosity assumption have already been proposed in the literature [20, 39, 70]. The

most efficient in terms of ciphertext size is due to Boneh, Gentry and Hamburg [39].

95



However, encryption time in their scheme is quartic in the security parameter, and thus

has poor performance. The PEKS scheme in [70] performs better but still requires many

Jacobi symbol computations when used as an anonymous IBE. The most time-efficient

anonymous IBE to date was presented at CT-RSA 2009 by Ateniese and Gasti [20].

Their construction has similarly-sized ciphertexts to Cocks’ original scheme while there

is a drop of approximately 30% in performance compared to Cocks according to our

experimental results (for a 1024-bit modulus used to encrypt a 128-bit symmetric key;

note that IBE is typically used as part of a KEM-DEM). While this is still practical, it

is desirable to obtain an anonymous IBE from quadratic residuosity whose performance

is on par with the original Cocks scheme, especially for time-critical applications.

We now exploit the homomorphic property of our XOR-homomorphic construction

to construct a new anonymous IBE from quadratic residuosity whose performance closely

matches that of the original Cocks scheme. This scheme outperforms the Ateniese and

Gasti scheme from [20]. Unfortunately, the size of ciphertexts in our scheme is double

that of Cocks, and almost double that of [20]. However, we obtain anonymity using a

different approach which we believe to be conceptually simpler. We prove this system

ANON-IND-ID-CPA secure in the random oracle model and provide both an analytical

and experimental comparison between our approach and that of [20].

4.4.7.1 Overview of our Anonymous IBE

It was observed by Galbraith that for any integer c generated in Cocks system, it is an

invariant that (
c2 − 4a

N

)
= 1.

We expect this to hold with probability negligibly close to 1/2 for random a. Hence, an

adversary has a non-negligible advantage attacking anonymity. In the XOR-homomorphic

variant from Section 4.4.5, the integer c is replaced by a polynomial c(x) = c1x + c0 in

the quotient ring Ra = ZN [x]/(x2−a). We can generalize the above test for polynomials
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in Ra. Define

GT(a, c(x)) =

(
c2

0 − c2
1a

N

)
.

Now we define two subsets Ga = {c(x) ∈ Ra : GT(a, c(x)) = 1} and Ḡa = {c(x) ∈ Ra :

GT(a, c(x)) = −1} of Ra. In addition, the set of legally generated ciphertext polynomials

(i.e. those in the image of the encryption algorithm) is denoted by the set Sa. It was

shown earlier that Sa ≈
C
Ga (computationally indistinguishable) even given access to

the secret key r. It is also shown that Ga is a multiplicative group in Ra and Sa is a

subgroup of Ga.

The main idea behind our anonymous IBE is to allow anonymized ciphertexts to be

elements of Ḡa half of the time and Ga the other half. Therefore, the adversary cannot

use Galbraith’s test to distinguish identities. The main problem however is that we don’t

know what a “ciphertext” in Ḡa decrypts to without knowing the secret key. We can

show that a random element in Ḡa can be sampled by multiplying any fixed element

g(x) ∈ Ḡa by a uniformly random element of Ga. Our idea is to derive this fixed element

g(x) from the user’s identity using a hash function (modelled as a random oracle in the

security proofs), and then multiply it by an encryption of the desired message, which

lies in Sa. Since Sa and Ga are computationally indistinguishable, the resultant element

c′(x) is also computationally indistinguishable from a random element in Ḡa. It can

also be shown that the homomorphic property holds even between polynomials in Ḡa

and Ga. Therefore, c′(x) is an encryption of the desired message XORed with whatever

g(x) decrypts to. Since the decryptor can determine what g(x) decrypts to, she can

recover the message. A formal description of the scheme along with a proof of security

are provided in Appendix C.

The anonymous IBE retains the XOR homomorphic property, but there is one im-

portant caveat to be aware of. In order to perform homomorphic operations, the eval-

uator needs to know the identity. More precisely, he needs to know a = H(id), which

breaks anonymity. But our scheme is universally anonymous [115] insofar as anyone can

anonymize the ciphertext when required. Therefore, the evaluator can anonymize the
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ciphertext when he is finished his homomorphic evaluation.

4.4.8 Extension to larger message spaces

We now consider a generalization of our XOR homomorphic scheme to support addition

modulo e > 2. Independently, Boneh, LaVigne and Sabin [41] described the same

generalization with some small differences. The main idea is to use a generalization

of quadratic residues known as power residues. So to provide homomorphic addition

modulo e, one relies on the hardness of the e-th residuosity problem, a problem that is

defined analogously to the quadratic residuosity problem and believed to be intractable.

We consider the case of prime e. The details of our construction remain the same

except that we work in the ring R = ZZN [x]/(xe − a) instead of ZZN [X]/(x2 − a) as

before. In addition, a = H(id) is taken to be an element whose e-th power residue

symbol modulo N is 1. The size of a ciphertext is e2 elements of ZN . Boneh, LaVigne

and Sabin describe a variant whose ciphertexts contain only e elements but this requires

the seemingly uninstantiable notion of a hash function capable of hashing to e-th residues

without the prime factorization of N . We refer the reader to [41] for a fuller discussion

on the security and correctness properties of this generalization. A natural open problem

is to reduce the ciphertext size to linear in e as opposed to quadratic.

4.4.9 Applications Overview

It turns out that XOR-homomorphic cryptosystems have been considered to play an

important part in several applications. The most well-known and widely-used unbounded

XOR-homomorphic public-key cryptosystem is Goldwasser-Micali (GM) [106], which is

based on the quadratic residuosity problem. Besides being used in protocols such as

private information retrieval (PIR), GM has been employed in some specific applications

such as:

• Peng, Boyd and Dawson (PBD) [158] propose a sealed-bid auction system that
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makes extensive use of the GM cryptosystem.

• Bringer et al. [54] apply GM to biometric authentication. It is used in two primary

ways; (1) to achieve PIR and (2) to assist in computing the hamming distance‡

between a recorded biometric template and a reference one.

In some of these applications, an XOR-homomorphic identity-based scheme may be of

import.

Consider our wireless sensor network scenario from the introduction (Section 1.2.0.2).

An XOR-homomorphic cryptosystem can be turned into an AND-homomorphic cryp-

tosystem, as described by Sanders, Young and Yung (SYY) [166]; we defer the details

to that work. Hence, our identity-based XOR-homomorphic scheme can be converted

into a scheme with an AND homomorphism. Such a homomorphism is useful for ag-

gregation in wireless sensor networks. Consider a wireless sensor network that senses

movement and reports it to a base station. Suppose that movement only takes place

infrequently. Each sensor node records whether or not movement was detected, and

encrypts such as a YES/NO Boolean value (represented by 0 and 1 respectively). An

aggregator node that receives several encrypted readings can use our cryptosystem to

homomorphically AND the values together (without seeing the underlying values). The

base station that receives the result of this aggregation can decrypt the ciphertext to

determine whether there was any movement - if the decrypted value is 0, then movement

was sensed somewhere; otherwise no movement was detected.

4.4.10 Performance

With regard to performance, our construction requires 8 multiplications in ZN for a single

homomorphic operation in comparison to a single multiplication in GM. Furthermore,

the construction has higher ciphertext expansion than GM by a factor of 4. Encryption

‡The hamming distance between two equal-length vectors is the number of positions at which the

vectors differ.
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involves 2 modular inverses and 6 multiplications (only 4 if the strongly homomorphic

property is forfeited). In comparison, GM only requires 1.5 multiplications on average.

4.5 Summary

In this chapter, a formal definition of attribute based group homomorphic encryption

(ABGHE) was provided. Then we discussed several properties of ABGHE schemes. Next

we looked at existing multiplicatively homomorphic ABGHE schemes that are based on

pairings. We observed that these schemes support a bounded additive homomorphism

(addition in the exponent) but are not group homomorphic. To illustrate the properties

of ABGHE, we analyzed a multiplicatively homomorphic ABGHE based on pairings due

to Katz, Sahai and Waters (KSW) [124], and highlighted its properties.

We presented a construction of an identity-based XOR-homomorphic scheme whose

security is based on the quadratic residuosity problem. An anonymous variant was also

discussed. Furthermore, an extension to support addition modulo m for small m was

described. The space complexity of ciphertexts grows quadratically with m. Finally a

simple use-case example for wireless sensor network scenarios is expounded.
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Chapter 5

Evaluating Circuits with Bounded

Arity

In the previous chapter, attribute-based group homomorphic encryption was investi-

gated. We now turn our attention to the evaluation of more complex functions with

the ultimate goal being to evaluate all Boolean circuits. Our goal in this chapter is to

construct an ABHE scheme that compactly evaluates all Boolean circuits with N inputs,

for any positive integer N , specified as a parameter. To achieve this we need leveled

ABFHE and a primitive called multi-key FHE, which we will define momentarily. This

result is significant for a variety of reasons:

1. The technique of bootstrapping is currently the only known way to evaluate cir-

cuits of unbounded depth. Obtaining ABHE for circuits of unbounded depth has

been impeded by the fact that employing bootstrapping in the attribute-based

setting (non-interactively) is particularly challenging since bootstrapping requires

encryptions of the secret key bits to be available as part of the public key. One

of the main results of this thesis is showing that bootstrapping is indeed possible

(surprisingly) in the attribute-based setting, but its realization relies on complex

computationally-expensive machinery, and thus serves largely as a possibility re-
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sult. Our approach in this chapter circumvents the hurdle of bootstrapping in

the attribute-based setting, at the expense of bounding the arity of the circuits

supported by the resulting scheme.

2. Our construction can be instantiated for any bound N (the parameters grow ac-

cordingly). However the message space can be set to {0, 1}w for an arbitrary

positive integer w. Indeed, as we will see later, no such bound w is required at

all in practice but is adopted here to fulfill the syntactic requirement of a finite

message space. So every sender can encrypt an input of w bits, and we can set

w as large as we want. Therefore N binary strings of length w can be used as

“inputs” in an evaluation.

3. The central idea underpinning the approach in this chapter is resurrected later in

the thesis in our possibility result for MA-ABFHE for general access policies. Fur-

thermore, the approach undertaken here highlights a potential separation between

the worlds of ABE and FHE in achieving MA-ABFHE.

Our work builds upon the notion of multikey FHE put forward by López-Alt, Tromer

and Vaikuntanathan [135]. The authors of that work gave a concrete construction of

multikey FHE based on NTRU [117]. We present a new multi-key FHE scheme based

on Learning with Errors (LWE) in the next chapter.

We show that if there exists a secure multikey FHE scheme whose decryption circuit is

of depth δ = δ(λ,N) and there also exists a secure ABHE scheme E that is homomorphic

for the class of Boolean circuits of depth δ , then there exists an ABHE scheme E ′ that is

homomorphic for all Boolean circuits in ({0, 1}w)N → {0, 1}w (i.e. with N independent

inputs of width w bits and of arbitrary depth). In particular, E ′ inherits the parameters

D and K from E . This means that if E is instantiated from an MA-ABHE scheme

MA with a desired D, we easily obtain another MA-ABHE scheme MA′ that yields a

corresponding E ′ with the same D.
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Our result is (informally) captured in the following theorem statement. We state the

theorem formally and provide a proof in Section 5.2.

Theorem 5.0.1 (Informal). Let N be a positive integer. Let w be a positive inte-

ger. Let λ be a security parameter. Suppose there exists a semantically secure multikey

FHE scheme whose decryption circuit has depth δ = δ(λ,N). Suppose there exists a

sementically-secure (resp. EVAL-SIM-secure) leveled ABFHE scheme ElABFHE that can

compactly evaluate circuits of depth δ. Then there exists a semantically secure (resp.

EVAL-SIM secure) ABHE scheme (whose parameters D and K are the same as ElABFHE)

that can compactly evaluate all Boolean circuits with N inputs over the domain {0, 1}w.

Our construction relies on multi-key FHE and leveled ABFHE. If we have a leveled

ABFHE with a class of access policies F, then we get a (“pure”) ABFHE for the class of

policies F with a bound N on the number of inputs. The main idea behind our approach

is that an encryptor generates a key-pair (pk, sk) for the multi-key FHE scheme and it

encrypts the secret key sk with the leveled ABFHE scheme to obtain ciphertext ψ. Then

the encryptor encrypts every bit of plaintext (say w bits) with the multi-key FHE scheme

using pk to obtain ciphertext c1, . . . , cw. It sends the ciphertext CT := (ψ, c1, . . . , cw).

The evaluator evaluates the circuit on the multi-key FHE ciphertexts and obtains an

encrypted result c′. Then it evaluates with the leveled ABFHE scheme the decryption

circuit of the multi-key FHE scheme on c′ together with the encrypted secret keys (the

ψ ciphertexts). We obtain a ciphertext in the leveled ABFHE scheme that encrypts the

result of the computation (i.e. what c′ encrypts). The size of the resulting ciphertext is

independent of N and the size of the circuit. By using our multi-key FHE scheme from

the next chapter, we only need the leveled ABFHE scheme to have L = O(logN) levels

where N is the bound on the number of inputs.
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5.0.1 Building Blocks

5.0.1.1 Multikey FHE

Multi-Key FHE allows multiple independently-generated keys to be used together in

a homomorphic evaluation. The syntax of multi-key FHE imposes a limit N on the

number of such keys that can be supported. Furthermore, the size of the evaluated

ciphertext does not depend on the size of the circuit (or number of inputs), but instead

on the number of independent keys N that is supported. In order to decrypt, the parties

who have the corresponding secret keys must collaborate such as in an MPC protocol.

Definition 5.0.1 (Based on Definition 2.1 in [135]). A multi-key C-homomorphic scheme

family for a class of circuits C and message space P is a family of PPT algorithms

{E(N) := (Gen,Encrypt,Decrypt,Eval)}N>0 where E(N) is defined as follows:

• MKFHE.Gen takes as input the security parameter 1λ and outputs a tuple (pk, sk, vk)

where pk is a public key, sk is a secret key and vk is an evaluation key.

• MKFHE.Encrypt takes as input a public key pk and a message m ∈ P, and outputs

an encryption of m under pk.

• MKFHE.Decrypt takes as input 1 ≤ k ≤ N secret keys sk1, . . . , skk and a ciphertext

c, and outputs a message m′ ∈ P.

• MKFHE.Eval takes as input a circuit C ∈ C, and ` pairs (c1, vk1), . . . , (c`, vk`) and

outputs a ciphertext c′.

Informally, evaluation is only required to be correct if at most N keys are used

in MKFHE.Eval; that is, |{vk1, . . . , vk`}| ≤ N . Furthermore, the size of an evaluated

ciphertext c′ must only depend polynomially on the security parameter λ and the number

of keys N , and not on the size of the circuit.

The IND-CPA security game for multi-key homomorphic encryption is the same as

that for standard public-key encryption; note that the adversary is given the evaluation
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key vk.

There are two multi-key FHE schemes to the best of our knowledge: the scheme

of López-Alt, Tromer and Vaikuntanathan [135] based on NTRU and our multi-key

FHE scheme in the next chapter based on Learning wtih Errors (LWE). Although our

construction can work with any multi-key FHE, we obtain better efficiency if we use the

multi-key FHE scheme in the next chapter. More precisely, the depth of the decryption

circuit of the multi-key FHE in the next chapter is O(logN) (as opposed to O(log2N)

in the case of the multi-key FHE from [135]) which results in fewer levels needed for the

leveled ABFHE.

For the remainder of this chapter, we will denote an instance of a multi-key FHE by

EMKFHE.

5.0.1.2 Leveled ABFHE

Our approach uses a leveled ABFHE scheme in an essential way. A leveled ABFHE

scheme allows one to evaluate a circuit of bounded depth. The bound on the depth L

is chosen in advance of generating the public parameters. Gentry, Sahai and Waters

[98] presented the first leveled ABFHE where the class of access policies consists of

bounded-depth circuits. They based security on LWE. A leveled Identity-Based FHE

(IBFHE) scheme from LWE is also presented in [98]. Furthermore a leveled IBFHE that

is multi-identity (supports evaluation on ciphertexts with different identities) from LWE

is presented in the next chapter.

Any of the above schemes can be used to instantiate our construction and its prop-

erties are inherited by our construction. Therefore if we use an identity-based scheme,

our resulting construction is identity-based etc.

For the rest of the paper, we will denote a leveled ABFHE scheme by ElABFHE with

message space PElABFHE , attribute space AElABFHE and class of predicates FElABFHE .
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5.0.2 Overview of Our Approach

The main idea behind our approach is to exploit multi-key FHE and leveled ABFHE

to construct a new ABFHE scheme that can evaluate circuits with up to N inputs,

where N is chosen before generating the public parameters. Let EMKFHE be a multi-

key FHE scheme whose decryption circuit has depth δ(λ,N) where N is the number of

independent keys tolerated and λ is the security parameter. Let ElABFHE be a leveled

ABFHE scheme as described in Section 5.0.1.2 that can compactly evaluate circuits of

depth δ(λ,N).

Let w be a positive integer. The supported message space of our scheme is P ,

{0, 1}w. The supported attribute space is A , AElABFHE and the supported class of access

policies is F , FElABFHE . In other words, the attribute space and class of access policies

is the same as the underlying leveled ABFHE scheme. Finally, the class of supported

circuits is C , PN → P.

Roughly speaking, to encrypt a message µ ∈ P under attribute a ∈ A in our scheme,

(1) a key triple (pk, sk, vk) is generated for EMKFHE; (2) µ is encrypted with EMKFHE under

pk; (3) sk is encrypted with ElABFHE under attribute a; (4) the two previous ciphertexts

along with vk constitute the ciphertext that is produced. Therefore, EMKFHE is used for

hiding the message and for homomorphic computation, whereas ElABFHE enforces access

control by appropriately hiding the secret keys for EMKFHE.

The evaluator performs homomorphic evaluation on the multi-key FHE ciphertexts

and obtains a result c′. It then homomorphically decrypts c′ with the leveled ABFHE

scheme using the encryptions of the secret keys for EMKFHE. As a result we obtain a

ciphertext whose length is independent of N and the circuit size, which satisfies our

compactness condition.

In more concrete terms, we assume without loss of generality that the message space

of EMKFHE is {0, 1}, and we encrypt a w-bit message µ = (µ1, . . . , µw) ∈ {0, 1}w one bit at

a time using EMKFHE. Furthermore, let N be the maximum number of keys supported by
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EMKFHE. Our construction can therefore support the class of circuits C = {({0, 1}w)N →

{0, 1}w}. We remind the reader that w can be arbitrarily large, and in practice, the

length of plaintexts may be shorter than w. In practice, each sender’s input may be of

arbitrary size. However, there is a limit, N , on the number of independent senders i.e.

the number of inputs to the circuit where the inputs are taken from the domain {0, 1}w.

5.0.3 Construction

We now present our construction, which we call bABFHE.

5.0.3.1 Setup

On input a security parameter λ and a bound N on the number of inputs to support,

the following steps are performed:

1. Choose integer w.

2. Generate (PPElABFHE ,MSKElABFHE
) ← ElABFHE.Setup(1λ, 1L) where L = O(log λ ·N)

is the depth of the decryption circuit of ElABFHE for parameters λ and N .

3. Output (PP := (PPElABFHE , λ,N,w),MSK := (PP,MSKElABFHE
)).

5.0.3.2 Secret Key Generation

Given the master secret key MSK := (PP,MSKElABFHE) and a policy f ∈ F, a secret

key skf for f is generated as skf ← ElABFHE.KeyGen(MSKElABFHE
, f). The secret key

SKf := (PP, skf ) is issued to the user.

5.0.3.3 Encryption

On input public parameters PP := (PPElABFHE
, λ,N,w), a binary string µ = (µ1, . . . , µw) ∈

{0, 1}w and an attribute a ∈ A: the sender first generates a key triple for EMKFHE; that is,

she computes (pk, sk, vk)← EMKFHE.Gen(1λ, 1N ). Then she runs ψ ← ElABFHE.Encrypt(PPElABFHE
, a, sk).
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Subsequently she uses pk to encrypt each bit µi ∈ {0, 1} in turn using EMKFHE for i ∈ [w];

that is, she computes ci ← EMKFHE.Encrypt(pk, µi). Finally she outputs the ciphertext

CT := (type := 0, enc := (ψ, vk, (c1, . . . , cw))).

Remark A ciphertext CT in our scheme has two components: the first is labeled with

type and the second is labeled with enc. The former has two valid values: 0 and 1; 0

indicates that the ciphertext is “fresh” while 1 indicates that the ciphertext is the result

of an evaluation. The value of the type component specifies how the enc component is

to be parsed.

5.0.3.4 Evaluation

On input public parameters PP := (PPElABFHE , λ,N,w), a circuit C ∈ C, and ciphertexts

CT1, . . . ,CT` with ` ≤ N , the evaluator performs the following steps. Firstly, the cipher-

texts are assumed to be “fresh” ciphertexts generated with the encryption algorithm.

In other words, their type components are all 0. Otherwise the evaluator outputs ⊥.

Consequently, the evaluator can parse CTi as (type := 0, enc := (ψi, vki, (c
(i)
1 , . . . , c

(i)
w )))

for every i ∈ [`]. We denote by ai the attribute associated with the ElABFHE ciphertext

ψi. The maximum degree of composition of our construction is inherited from that of

the underlying leveled ABFHE scheme ElABFHE. We denote this as usual by D. The

evaluator derives the degree of composition as d ← |{a1, . . . , a`}|, and outputs ⊥ and

aborts unless d ≤ D.

Next the evaluator computes

c′ ← EMKFHE.Eval(C, (c
(1)
1 , vk1), . . . , (c(1)

w , vk1), . . . , (c
(`)
1 , vk`), . . . , (c

(`)
w , vk`))

and encrypts this ciphertext with the leveled ABFHE scheme under any arbitrary ai,

say a1; that is, the evaluator computes ψc′ ← ElABFHE.Encrypt(PPElABFHE , a1, c
′). The final

step is to evaluate using ElABFHE the decryption circuit D〈N,λ〉
∗ of EMKFHE:

ψ ← ElABFHE.Eval
(
PPElABFHE

, D〈N,λ〉, ψc′ , ψ1, . . . , ψ`
)
.

∗for the specific case of parameters N and λ
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The evaluator outputs the evaluated ciphertext CT′ := (type := 1, enc := ψ).

Remark Observe that a “fresh” ciphertext has a different form to an evaluated cipher-

text. Further evaluation with evaluated ciphertexts is not guaranteed by our construc-

tion. Hence it is a 1-hop homomorphic scheme using the terminology of Gentry, Halevi

and Vaikuntanathan [95].

5.0.3.5 Decryption

To decrypt a ciphertext CT := (type, enc) with a sequence of secret keys 〈SKf1 :=

(PP, skf1), . . . ,SKfk := (PP, skfk )〉 for respective policies f1, . . . , fk ∈ F, a decryptor

performs the following steps.

If CT is a “fresh” ciphertext (i.e. type = 0), then enc is parsed as (ψ, vk, (c1, . . . , cw))

and the decryptor computes sk← ElABFHE.Decrypt(〈sk1, . . . , skk 〉, ψ). If sk = ⊥, then the

decryptor outputs ⊥ and aborts. Otherwise, she computes

µj ← EMKFHE.Decrypt(sk, cj) for every j ∈ [w]

and outputs the plaintext µ := (µ1, . . . , µw) ∈ {0, 1}w.

If CT is an evaluated ciphertext (i.e. type = 1), then the decryptor parses enc as ψ

and computes x← ElABFHE.Decrypt(〈sk1, . . . , skk 〉, ψ). If x = ⊥ the decryptor outputs ⊥

and aborts; otherwise the plaintext µ := x ∈ {0, 1}w is outputted.

5.0.4 Formal Description

A formal description of the construction bABFHE is given in Figure 5.1. As mentioned

previously, the parameters D (maximum degree of composition) and K (maximum num-

ber of decryption keys passed to Decrypt) are inherited directly from the underlying

leveled ABFHE scheme ElABFHE. Although circuits in the supported class send a se-

quence of elements in the message space P := {0, 1}w to another element in the message

space P, we simplify the description here and assume that each circuit C outputs a single

bit. A circuit Ĉ in our supported class can then be modelled as w such circuits.
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Fig. 5.1: Formal Description of scheme bABFHE.

Setup(1λ, 1N ) :

1. Choose integer w.

2. Let g(·, ·) be a polynomial associated

with EMKFHE that gives the number of

inputs to the decryption circuit for N

keys and security parameter λ. Let

L = g(λ,N).

3. Generate (PPElABFHE ,MSKElABFHE) ←

ElABFHE.Setup(1λ, 1L).

4. Output

(PP := (PPElABFHE , λ,N,w),MSK :=

MSKElABFHE).

Encrypt(PP, a, µ) :

1. Parse PP as (PPElABFHE , λ,N,w).

2. Parse µ as (µ1, . . . , µw) ∈ {0, 1}w.

3. (pk, sk, vk)← EMKFHE.Gen(1λ, 1N )

4. ψ ← ElABFHE.Encrypt(PPElABFHE , a, sk).

5. ci ← EMKFHE.Encrypt(pk, µi) for i ∈ [w].

6. Output CT := (type := 0, enc :=

(ψ, vk, (c1, . . . , cw))).

KeyGen(MSK, f) :

1. Parse MSK as (PP,MSKElABFHE).

2. skf ← ElABFHE.KeyGen(MSKElABFHE , f).

3. Output SKf := (PP, skf ).

Decrypt(〈SKf1 , . . . , SKfk 〉,CT) :

1. If k > K : output ⊥ and abort.

2. Parse SKfi as (PP, skfi) for i ∈ [k ].

3. Parse PP as (PPElABFHE , λ,N,w).

4. Parse CT as (type, enc).

5. If type = 0:

(a) Parse enc as (ψ, vk, (c1, . . . , cw))

(b) Compute sk ←

ElABFHE.Decrypt(〈sk1, . . . , skk 〉, ψ).

(c) If sk = ⊥: output ⊥ and abort.

(d) µi ← EMKFHE.Decrypt(sk, ci) for

i ∈ [w].

(e) Output µ := (µ1, . . . , µw) ∈

{0, 1}w.

6. Else If type = 1:

(a) Parse enc as ψ.

(b) Compute x ←

ElABFHE.Decrypt(〈sk1, . . . , skk 〉, ψ).

(c) If x = ⊥: output ⊥ and abort.

(d) Output µ := x ∈ {0, 1}w.

7. Else output ⊥.

Eval(PP, C,CT1, . . . ,CT`) :

1. If ` > N : output ⊥ and abort.

2. Parse PP as (PPElABFHE , λ,N,w).

3. For i ∈ [`]:

(a) Parse CTi as (type := 0, enc := (ψi, vki, (c
(i)
1 , . . . , c

(i)
w ))).

(b) Set ai as the attribute associated with ψi.

4. Set d ← |{a1, . . . , a`}| (degree of composition).

5. If d > D: output ⊥ and abort.

6. c′ ← EMKFHE.Eval(C, (c
(1)
1 , vk1), . . . , (c

(1)
w , vk1), . . . , (c

(`)
1 , vk`), . . . , (c

(`)
w , vk`)).

7. ψc′ ← ElABFHE.Encrypt(PPElABFHE , a1, c
′).

8. Let D〈N,λ〉 be the decryption circuit of EMKFHE for parameters N and λ.

9. ψ ← ElABFHE.Eval
(
PPElABFHE , D〈N,λ〉, ψc′ , ψ1, . . . , ψ`

)
.

10. Output CT′ := (type := 1, enc := ψ).
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5.0.5 Correctness

In the evaluation algorithm, the desired N -ary circuit C whose N inputs are over the

domain {0, 1}w is evaluated using the multi-key FHE scheme. Observe that C can

be of arbitrary depth since the size of the resultant multi-key FHE ciphertext only

depends on λ and N . We then encrypt this resulting ciphertext with ElABFHE in order to

homomorphically evaluate the decryption circuit of EMKFHE using ElABFHE. Consequently,

we obtain a ciphertext whose size is independent of N as required by the compactness

condition for ABHE.

5.1 Security

5.1.1 Semantic Security

Without loss of generality we assume that the message space PElABFHE of ElABFHE is big

enough to represent secret keys in EMKFHE and binary strings in P.

Lemma 5.1.1. If ElABFHE is an IND-X-CPA-secure leveled ABFHE scheme and EMKFHE

is an IND-CPA-secure multi-key FHE scheme, then bABFHE is IND-X-CPA where X ∈

{sel,AD}.

Proof. We prove the lemma by means of a hybrid argument.

Hybrid 0 IND-X-CPA game for bABFHE.

Hybrid 1 Same as Hybrid 0 except with one difference. Let a? ∈ A be the target

attribute chosen by the adversary A. The challenger uses a modified Encrypt algorithm

to compute the leveled ABFHE ciphertext corresponding to a∗ by replacing Step 4 with

ψ ← ElABFHE.Encrypt(PPElABFHE , a∗, 0|sk|) where 0|sk| is a string of zeros whose length is

the same as the multi-key FHE secret key generated in Step 3 of Encrypt. The algorithm

is otherwise unchanged.

We claim that any poly-time A that can distinguish between Hybrid 0 and Hybrid

1 with a non-negligible advantage can break the IND-X-CPA security of ElABFHE. An
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adversary B that uses A proceeds as follows. When A chooses a target attribute a?, B

generates a key-triple for EMKFHE i.e. it computes

(pk, sk, vk)← EMKFHE.Gen(1λ, 1N ).

Then it gives a∗ to its challenger along with two messages x0 := sk and x1 :=

0|sk|. Note that we assume for simplicity that both messages are in PElABFHE
; if multiple

messages (say k) are required then the usual hybrid argument can be applied which loses

a factor of k. Subsequently, B embeds the challenge leveled ABFHE ciphertext as the ψ

component of its own challenge ciphertext CT∗. It computes the remaining components

of CT∗ as in the Encrypt algorithm. If ψ encrypts x0, then B perfectly simulates Hybrid 0.

Otherwise, B perfectly simulates Hybrid 1. Note that secret key queries made by A can

be perfectly simulated by B. Thus, if A has a non-negligible advantage distinguishing

between the hybrids, then B has a non-negligible advantage attacking the IND-X-CPA

security of ElABFHE.

For i ∈ [w]:

Hybrid 1 + i Same as Hybrid 1 + (i− 1) with the exception that the challenger does

not encrypt message bit µ
(0)
i or µ

(1)
i (using EMKFHE) chosen by A. Instead it encrypts

some fixed message bit β ∈ {0, 1}.

We now show that if A can efficiently distinguish between Hybrid 1 + i and Hybrid

1 + (i − 1), then there is a PPT algorithm G that can use A to attack the IND-CPA

security of EMKFHE. Let pk and vk be the public key and evaluation key that G receives

from its challenger. When A chooses µ(0) ∈ {0, 1}w and µ(1) ∈ {0, 1}, G simply gives µ
(b)
i

and β to its IND-CPA challenger where b is the bit it uniformly samples in its simulation

of the IND-X-CPA challenger. Let c? be the challenge ciphertext it receives from the

IND-CPA challenger. It sets ci ← c∗ in the challenge ciphertext CT∗. If c? encrypts

µ
(b)
i , then the view of A is identical to Hybrid 1 + (i− 1). Otherwise, the view of A is

identical to Hybrid 1 + i. Therefore, a non-negligible advantage obtained by A implies a

non-negligible advantage for G in the IND-CPA game, and thus contradicts the IND-CPA

112



security of EMKFHE.

Finally observe that the adversary has a zero advantage in Hybrid 1 +w because the

challenge ciphertext contains no information about the challenger’s bit.

5.1.2 EVAL-SIM Security

Recall the simulation-based security definition from Section 3.3.2, which we called EVAL-SIM

security. In the following lemma, we show that bABFHE inherits EVAL-SIM security from

ElABFHE.

Lemma 5.1.2. Let EMKFHE be an IND-CPA secure multi-key FHE scheme. Let ElABFHE

be an X-EVAL-SIM secure ABHE scheme with X ∈ {sel,AD}. Then bABFHE is X-

EVAL-SIM secure.

Proof. By the hypothesized X-EVAL-SIM security of ElABFHE, there exists a PPT simu-

lator SElABFHE such that for all PPT adversaries AElABFHE := (AElABFHE,1,AElABFHE,2) we have

|Pr[ExpREAL
ElABFHE,AElABFHE

→ 1]− Pr[ExpIDEAL
ElABFHE,AElABFHE ,SElABFHE

→ 1]| < negl(λ). (5.1.1)

Remark Note that in this proof we use the definition for adaptive EVAL-SIM security,

which is slightly different to that for sel-EVAL-SIM security, but the argument holds

analogously for the latter.

A simulator S can be constructed using SElABFHE
in order to achieve X-EVAL-SIM

security for bABFHE. The simulator S runs as follows:

• S(PP, C, {a1, . . . , ad }) with d ≤ D, a1, . . . , ad ∈ A and C ∈ C:

1. Parse PP as (PPElABFHE
, λ,N,w).

2. Let D〈N,λ〉 be the decryption circuit of EMKFHE for parameters N and λ.

3. Output SElABFHE(PPElABFHE
, D〈N,λ〉, {a1, . . . , ad }).
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We claim that if there exists a PPT adversary A := (A1,A2) with a non-negligible

advantage distinguishing the real distribution and ideal distribution for bABFHE (with

respect to S), then there exists a PPT adversary AElABFHE := (AElABFHE,1,AElABFHE,2) with

a non-negligible advantage distinguishing the real distribution and ideal distribution for

ElABFHE (with respect to SElABFHE
). If this claim were to hold it would contradict the

hypothesized X-EVAL-SIM security of ElABFHE, which seals the lemma. To prove the

claim, we show how to construct (AElABFHE,1,AElABFHE,2) from (A1,A2). The algorithm

AElABFHE,1 is given as input the public parameters PPElABFHE
for ElABFHE. We denote its

key generation oracle by O1. It runs as follows.

1. Set PP := (PPElABFHE , λ,N,w) (the parameters N and w are fixed elsewhere).

2. Run (C, (a1, µ1), . . . , (a`, µ`), st)← AO1
1 (PP).

3. For i ∈ [`]:

(a) Parse µi as (µ
(i)
1 , . . . , µ

(i)
w ) ∈ {0, 1}w.

(b) (pki, ski, vki)← EMKFHE.Gen(1λ, 1N )

(c) c
(i)
j ← EMKFHE.Encrypt(pk, µ

(i)
j ) for j ∈ [w].

4. Set d ← |{a1, . . . , a`}| (degree of composition).

5. c′ ← EMKFHE.Eval(C, (c
(1)
1 , vk1), . . . , (c

(1)
w , vk1), . . . , (c

(`)
1 , vk`), . . . , (c

(`)
w , vk`)).

6. Let D〈N,λ〉 be the decryption circuit of EMKFHE for parameters N and λ.

7. Set state← (st,PP, (vk1, (c
(1)
1 , . . . , c

(1)
w )), . . . , (vk`, (c

(`)
1 , . . . , c

(`)
w ))).

8. Output (D〈N,λ〉, (a1, c
′), (a1, sk1), . . . , (a`, sk`), state).

The algorithm AElABFHE,2 is given as input the state state (generated in AElABFHE,1), the

evaluated ciphertext ψ′ along with the ` + 1 “input ciphertexts” (which we denote by

ψc′ , ψ1, . . . , ψ`) and attributes {a1, . . . , ad }. We denote its key generation oracle by O2.

It runs as follows.
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1. Parse state as (st,PP, (vk1, (c
(1)
1 , . . . , c

(1)
w )), . . . , (vk`, (c

(`)
1 , . . . , c

(`)
w ))).

2. Parse PP as (PPElABFHE , λ,N,w).

3. Generate bABFHE input ciphertext CTi ← (type := 0, enc := (ψi, vki, (c
(i)
1 , . . . , c

(i)
w )))

for i ∈ [`].

4. Generate bABFHE evaluated ciphertext CT′ ← (type := 1, enc := ψ′).

5. Run b← AO2
2 (st,CT′,CT1, . . . ,CT`).

6. Output b.

If ψ′ is generated with ElABFHE.Eval (i.e. the real distribution) then CT′ is distributed

identically to the output of bABFHE.Eval. On the other hand, if ψ′ is generated with

SElABFHE (i.e. the ideal distribution), then CT′ is distributed identically to S. Therefore,

a non-negligible advantage against bABFHE implies a non-negligible advantage against

ElABFHE.

5.2 Main Result

Theorem 5.2.1. Let N be a positive integer. Let w be a positive integer. Let λ be a secu-

rity parameter. Suppose there exists an IND-CPA secure multi-key FHE scheme EMKFHE

whose decryption circuit has depth δ(N,λ). Suppose there exists a leveled ABFHE

scheme ElABFHE that can compactly evaluate circuits of depth δ. Then there exists an

ABHE scheme E (whose parameters D and K are the same as ElABFHE) that can com-

pactly evaluate all Boolean circuits in {({0, 1}w)N → {0, 1}w} i.e. the class of Boolean

circuits of unbounded depth with N inputs over the domain {0, 1}w, such that

1. E is IND-X-CPA secure if ElABFHE is IND-X-CPA secure.

2. E is X-EVAL-SIM secure if ElABFHE is X-EVAL-SIM secure.
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for X ∈ {sel,AD}.

Proof. Instantiating our scheme bABFHE from Section 5.0.3 with the multi-key FHE

scheme EMKFHE and the ABHE scheme ElABFHE, the theorem follows by appealing to

Lemma 5.1.1 (IND-X-CPA security) and Lemma 5.1.2 (X-EVAL-SIM security).

Corollary 5.2.1. Let N be a positive integer. Assuming the hardness of LWE, there

exists a IND-sel-CPA secure ABFHE that can compactly evaluate circuits with N inputs.

Proof. We can instantiate the multi-key FHE scheme in our construction with the multi-

key FHE from the next chapter, whose security is based on LWE. Furthermore we can

instantiate the leveled ABFHE in our construction with the leveled ABFHE of Gentry,

Sahai and Waters [98], which is shown to be selectively secure under LWE.

5.2.1 Discussion

We could instantiate EMKFHE with the multi-key FHE scheme of López-Alt, Tromer

and Vaikuntanathan [135]. However its decryption circuit has depth O(log2 (N · λ)) as

opposed to O(log (N · λ)) for our multi-key FHE scheme from the next chapter, which

means that the leveled ABFHE scheme must be set up to accomodate more levels, which

in turn causes the parameters to blow up. Suppose we set N to be a large value so as

not to practically limit the number of inputs to a circuit. As a result, N dominates λ.

Therefore we need the leveled ABFHE to evaluate roughly O(logN) levels. Concretely,

suppose we were to pick a very large value of N , say N = 232, then we need a leveled

ABFHE that can evaluate on the order of 32 levels.

5.3 Application Scenario

Recall our medical records scenario from the introduction (Section 1.2.0.1). Three

senders encrypt sensitive medical data under appropriate attributes and send it to an
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evaluator for computation. Sender 1 encrypts her data m1 under attribute “CARDIOL-

OGY”. Sender 2 encrypts his data m2 with attribute “MATERNITY”. Sender 3 encrypts

her data m3 with attribute “CARDIOLOGY”. We now show how this example ties in

to the contributions in this chapter. The number of independent senders in this case

is 3. In reality the number of independent senders may be much larger. Suppose the

maximum number of expected independent senders is (say) N = 232. In other words, no

more than 232 medical researchers or doctors ever contribute medical data to the same

computation.

Let us instantiate our construction in this chapter with the multikey FHE from the

next chapter. We can instantiate ElABFHE with the leveled multi-identity scheme from

the next chapter. We need to set up this scheme to handle O(logN) levels which is on

the order of 32 for our example. Note that this leveled scheme is identity-based and

hence only allows simple access policies (such as disjunctive policies). Our construction

can evaluate circuits of arbitrary depth, supporting up to 232 independent senders. This

accommodates our scenario above for the three independent senders, assuming the ABHE

ElABFHE accommodates the access policies in the scenario. In particular, the receiver has

an access policy f with f(“CARDIOLOGY”) = 1 and f(“MATERNITY”) = 1. In

other words, the receiver can decrypt a ciphertext with attribute “CARDIOLOGY” or

attribute “MATERNITY” (or both in the case of the result of an evaluation). Note that

the computation carried out by the evaluator on the data contributed by the senders

may be arbitrary.

5.4 Summary

In this chapter, we proposed a black-box construction of ABFHE with support for circuits

with a bounded number of inputs N . Our construction relies on multi-key FHE and

leveled ABFHE. This overcomes roadblocks to achieving fully homomorphic encryption

in the attribute-based setting. Our construction can evaluate circuits of arbitrary depth,
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but has a limit on the arity of circuits supported i.e. the number of inputs. If the bound

on the number of inputs is satisfactory, then our scheme can evaluate all circuits that

arise in practice.
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Chapter 6

Multi-Identity Leveled

Homomorphic Encryption

Our main result in the previous chapter tells us that an ABFHE capable of evaluating

circuits with a bounded number of inputs can be constructed from multi-key FHE and

leveled ABFHE. Recall that a leveled FHE scheme allows an evaluator to evaluate a

circuit of an a priori bounded depth L. The parameter L must be specified in advance

when generating the public parameters of the scheme, whose size may depend on L.

Furthermore, a leveled homomorphic scheme supports any value of L, but the size of the

resulting public parameters, ciphertexts and secret keys may depend polynomially on

L. The time complexity of all algorithms may depend polynomially on L. In contrast,

a “pure” fully homomorphic encryption scheme allows circuits of unlimited depth to be

evaluated. However, for many applications in practice, a leveled scheme is adequate.

So besides serving as a building block for our construction in the previous chapter, a

leveled ABFHE is very useful in its own right. In fact, at the expense of a limited circuit

depth (which as aforementioned, can be chosen to satisfy application requirements, and

may indeed suffice for all evaluations), a leveled ABFHE overcomes the bound on arity

that our construction in the previous chapter suffers from. In summary, there are two
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primary reasons to explore a concrete construction of leveled ABFHE: (1). to instantiate

our construction in the previous chapter; and (2). as a standalone primitive with the

homomorphic capacity to evaluate circuits of bounded depth and unbounded arity.

At Crypto 2013, Gentry, Sahai and Waters presented the first leveled identity-based

fully homomorphic encryption (IBFHE) scheme [98] and the first leveled attribute-based

fully homomorphic encryption (ABFHE) scheme that are secure under the hardness of

the Learning with Errors (LWE) problem, a problem introduced by Regev [161] that has

received considerable attention in cryptography due to a known worst-case reduction to

a hard lattice problem.

Gentry, Sahai and Waters described a compiler [98], which we call the GSW compiler,

to transform an LWE-based IBE satisfying certain properties into a leveled IBFHE. They

showed that all known LWE-based IBE schemes are compatible with their compiler.

However, the GSW compiler only works in the single-identity setting. In other words,

the resulting IBFHE can only evaluate on ciphertexts created with the same identity.

Gentry, Sahai and Waters also described a compiler for leveled ABFHE that works in

the single-attribute setting. Unlike their IBFHE compiler, their ABFHE compiler is only

compatible with certain LWE-based ABE schemes. One such scheme is a slight variant

of the circuit-based ABE of Gorbunov et al. [109], which Gentry, Sahai and Waters show

can be compiled into a single-attribute leveled ABFHE. Extending this compiler to work

in the multi-attribute setting appears to be highly non-trivial.

In this chapter we present a compiler for multi-identity leveled IBFHE, and we give

an instance of an IBE scheme that can be successfully compiled into a multi-identity

leveled IBFHE that is provably secure under LWE, albeit in the random oracle model.

This is the first multi-identity leveled IBFHE to the best of our knowledge. We also show

that our techniques fall short of working with the attribute-based setting; constructing a

multi-attribute leveled ABFHE from LWE is an important question for future work, as

is removing the random oracle from our own multi-identity construction. We are unable

to prove that our multi-identity leveled IBFHE in this chapter is EVAL-SIM secure; this
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is also an open problem for future work. Note that our multi-identity leveled IBFHE

is 1-hop homomorphic insofar as after evaluation is complete, no further homomorphic

evaluation can be carried out; removing this limitation is another goal for future work.

Furthermore, in this chapter, we present a multi-key FHE scheme from the Learning

with Errors (LWE) problem. Our multi-key FHE has several advantages over the multi-

key FHE scheme of López-Alt, Tromer and Vaikuntanathan [135]. Firstly, it does not

rely on non-standard assumptions (the scheme from [135] relies on the Decisional Small

Polynomial Ratio (DSPR) assumption). Secondly, its decryption circuit is of depth

O(logN) (where N is the number of keys tolerated) which means it is more suitable

to instantiate our construction in the previous chapter. Finally it admits a one-round

distributed decryption protocol as shown by Mukherjee and Wichs [145]. In addition,

Mukherjee and Wichs [145] used our multi-key FHE to achieve 2-round multi-party

computation from LWE.

Remark Technically speaking, the GSW compiler does not produce a leveled IBFHE

in the standard sense, because the size of its evaluated ciphertexts are not independent

of L. This is not mentioned explicitly in [98] and the authors still refer to their identity-

based construction as “leveled”. Since our compiler for multi-identity leveled IBFHE is

built on the GSW single-identity compiler, our compiler suffers the same problem. For

the moment, we overlook this fact and return to it in Section 6.6.

6.1 Multi-Identity Leveled IBFHE

Definition 6.1.1. A Multi-Identity Leveled IBFHE scheme is defined with respect to

a message space P, an identity space I, a class of circuits C ⊆ P∗ → P and cipher-

text space C. A Multi-Identity Leveled IBFHE scheme is a tuple of PPT algorithms

(Setup,KeyGen,Encrypt,Decrypt,Eval) defined as follows:

• Setup(1λ, L,D):

On input (in unary) a security parameter λ, a number of levels L (circuit depth
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to support) and the number of distinct identities D that can be tolerated in an

evaluation, generate public parameters PP and a master secret key MSK. Output

(PP,MSK).

• KeyGen(MSK, id):

On input master secret key MSK and an identity id: derive and output a secret key

skid for identity id.

• Encrypt(PP, id, µ):

On input public parameters PP, an identity id, and a message µ ∈ P, output a

ciphertext c ∈ C that encrypts µ under identity id.

• Decrypt(skid1 , . . . , skidk , c):

On input k ≤ D secret keys skid1 , . . . , skidk for (resp.) identities id1, . . . , idk and

a ciphertext c ∈ C, output µ′ ∈ P if c is a valid encryption under identities

id1, . . . , idk ; output a failure symbol ⊥ otherwise.

• Eval(PP, C, c1, . . . , c`): On input public parameters PP, a circuit C ∈ C and ci-

phertexts c1, . . . , c` ∈ C, output an evaluated ciphertext c′ ∈ C.

More precisely, the scheme is required to satisfy the following properties:

• Let L and D be positive integers. Over all choices of (PP,MSK)← Setup(1λ, L,D),

C : P` → P ∈ {C ∈ C : depth(C) ≤ L}, every d ≤ D, id1, . . . , id` ∈ I s.t |{id1, . . . , id`}| =

d , µ1, . . . , µ` ∈ P, ci ← Encrypt(PP, idi, µi) for i ∈ [`], and c′ ← Eval(PP, C, c1, . . . , c`):

– Correctness

Decrypt(sk1, . . . , skd , c
′) = C(µ1, . . . , µ`) (6.1.1)

for any ski ← KeyGen(MSK, idi) for i ∈ [d ]

– Compactness

|c′| ≤ poly(λ, d ) (6.1.2)
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The time complexity of all algorithms may depend polynomially on L and D, in

addition to λ. The size of the public parameters, “fresh” ciphertexts and secret keys

may depend polynomially on L and D, in addition to λ. The size of an evaluated

ciphertext depends only on λ and the degree of composition d ≤ D of the evaluation.

One relaxation of Definition 6.1.1 is to weaken the compactness condition to allow

the size of an evaluated ciphertext c′ to also depend on L. This is in line with the

notion of “leveled” IBFHE achieved by Gentry, Sahai and Waters, as mentioned earlier.

Another relaxation of Definition 6.1.1 is to further weaken the compactness condition by

allowing the size of c′ to depend on the maximum degree of composition, D, instead of

the actual degree of composition, d . This corresponds more closely to the compactness

condition of multikey FHE (see Section 5.0.1.1).

For the remainder of this chapter, the term multi-identity leveled IBFHE should be

understood to mean the primitive described by Definition 6.1.1 with its compactness

condition relaxed to

|c′| ≤ poly(λ, L,D). (6.1.3)

Our central result in this chapter is informally summarized in the following theorem

statement. The theorem is formally stated and proven later in the chapter.

Theorem 6.1.1 (Informal). There exists a multi-identity leveled IBFHE scheme that is

selectively secure under the Learning With Errors problem in the random oracle model.

6.1.0.1 Multi-Key FHE

Our compiler for multi-identity IBFHE also works in the public-key setting. As a result,

we can obtain a multi-key FHE [135] from LWE in the standard model. In fact, multi-

identity IBFHE can be seen as an identity-based analog to multi-key FHE. The syntax of

multi-key FHE from [135] entails a parameter N , which specifies the maximum number of

independent keys tolerated in an evaluation. The size of the parameters and ciphertexts

are allowed to depend polynomially on N . Note that N is fixed and specified in advance
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of generating the scheme’s parameters. To the best of our knowledge, our multi-key

FHE scheme is the first such scheme that is based on a well-established problem such as

LWE; the construction from [135] relies on a non-standard computational assumption

referred to therein as the Decisional Small Polynomial Ratio (DSPR) assumption. Our

scheme positively answers the question raised in [135] as to whether other multi-key

FHE schemes exist supporting polynomially-sized N . Another advantage of our multi-

key FHE is that its decryption circuit has depth O(log λ ·N) as opposed to O(log2 λ ·N)

in the scheme from [135]; this means that to invoke Theorem 5.0.1 from Chapter 5, one

only needs an ABHE for circuits in NC1, as opposed to NC2.

6.1.1 Our Approach: Intuition

We now give an informal sketch of our approach to achieving multi-identity IBFHE. This

section is intended to provide an intuition and many of the details are deferred to later

in the chapter.

Remark Like [98], we omit the qualifier “leveled” for the rest of this chapter since we

focus only on leveled (IB)FHE in this chapter.

We remind the reader that a matrix M is denoted by an uppercase symbol written in

boldface, and a vector ~v is denoted by a lowercase symbol written in boldface. The i-th

element of ~v is denoted by vi. The inner product of two vectors ~a, ~b ∈ Znq for some

dimension n is written as 〈a, b〉.

6.1.1.1 GSW single-identity IBFHE

We start by briefly discussing the homomorphic properties of the GSW IBFHE schemes

from [98]. This discussion applies to any IBFHE constructed with their compiler. A

ciphertext in their scheme is an N ×N matrix C over Zq whose entries are “small” with

respect to q. Note that N is a parameter that will be discussed later. A secret key for

an identity id is an N -dimensional vector ~vid ∈ ZNq with at least one “large” coefficient;
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let this coefficient (say the i-th one) be vid,i ∈ Zq. The scheme can encrypt “small”

messages µ; an example to keep in mind is a message in {0, 1} . We say the matrix C

encrypts µ under identity id if C · ~vid = µ · ~vid +~e ∈ ZNq where ~e is a “small” noise vector

(i.e. roughly speaking, each of its coefficients is much less than q). As such, ~vid is an

approximate eigenvector for the matrix C with eigenvalue µ.

Homomorphic Operations

Suppose C1 and C2 encrypt µ1 and µ2 respectively; that is, Cj · ~vid = µj · ~vid + ~ej for

j ∈ {1, 2}. An additive homomorphism is supported. Let C+ = C1 +C2. Then we have

C+ · ~vid = (µ1 + µ2) · ~vid + ( ~e1 + ~e2). The error only grows slightly here, and as long as

it remains “small”, we can recover the sum (µ1 + µ2). A multiplicative homomorphism

is also supported. Let C× = C1 ·C2. Then we have

C× · ~vid = C1 · (µ2 · ~vid + ~e2)

= µ2 · (µ1 · ~vid + ~e1) + C1 · ~e2

= µ1 · µ2 · ~vid + µ2 · ~e1 + C1 · ~e2

= µ1 · µ2 · ~vid + “small”.

6.1.1.2 Different Identities

Now we give a flavor of how our multi-identity scheme operates. Suppose C1 encrypts

µ1 under identity id1 and C2 encrypts µ2 under identity id2. Let ~v1 and ~v2 be the

secret key vectors for id1 and id2 respectively. It holds that C1 · ~v1 = µ1 · ~v1 + ~e1 and

C2 · ~v2 = µ2 · ~v2 + ~e2 where ~e1, ~e2 ∈ ZNq are short vectors.

We would like to be able to perform homomorphic computation on both C1 and

C2 together; that is, use them both as inputs to the same circuit. Here we denote the

circuit by C ∈ C. Suppose we could produce a resulting 2N × 2N ciphertext matrix

Ĉ′ ∈ Z2N×2N
q that encrypts µ′ = C(µ1, µ2). More precisely, suppose that

Ĉ′ ·

 ~v1

~v2

 = µ′ ·

 ~v1

~v2

+ ~e′
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where ~e′ is “short”. Note that the size of Ĉ′ just depends (polynomially) on the number

of distinct identities (2 in this example).

Let ~v ∈ Z2N
q be the vertical concatenation of the two vectors ~v1 and ~v2. We could

exploit the homomorphic properties described above to obtain Ĉ′ if we could somehow

transform C1 and C2 into 2N × 2N matrices Ĉ1 and Ĉ2 respectively such that Ĉj ·~v =

µj · ~v + ”small” for j ∈ {1, 2}. Technically this transformation turns out to be difficult;

we show how to abstractly accomplish it in Section 6.3 and concretely in Section 6.4.

6.2 The Gentry, Sahai and Waters (GSW) Leveled IBFHE

6.2.1 Learning with Errors

The Learning with Errors (LWE) problem was introduced by Regev [161]. The goal of

the computational form of the LWE problem is to determine an n-dimensional secret

vector ~s ∈ Znq given a polynomial number of samples (~ai, bi) ∈ Zn+1
q where ~ai is uniform

over Znq and bi ← 〈~ai,~s〉+ ei ∈ Zq is the inner product of ~ai and ~si perturbed by a small

error ei ∈ Z that is sampled from a distribution χ over Z. We call the distribution χ

an error distribution (or noise distribution). The decision variant of the problem is to

distinguish such samples (~ai, bi) ∈ Zn+1
q from uniform vectors over Zn+1

q . The decisional

variant is more commonly used in cryptography, and is most relevant to our own work.

As a result, without further qualification, when we refer to LWE throughout this thesis

we are referring to the decisional variant.

Definition 6.2.1 ((Decisional) Learning with Errors (LWE) Problem [161]). Let λ be a

security parameter. For parameters n = n(λ), q = q(λ) ≥ 2, and a distribution χ = χ(λ)

over Z, the LWEn,q,χ problem is to distinguish the following distributions:

• Distribution 0: The i-th sample (~ai, bi) ∈ Zn+1
q is computed by uniformly sam-

pling ~ai
$←− Znq and bi

$←− Zq.

• Distribution 1: Generate uniform vector ~s
$←− Znq . The i-th sample (~ai, bi) ∈ Zn+1

q
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is computed by uniformly sampling ~ai
$←− Znq , sampling an error value ei

$←− χ and

computing bi ← 〈~ai,~s〉+ ei.

Definition 6.2.2 (B-bounded distributions (Definition 2 [98])). A distribution ensemble

{Dn}n∈N, supported over the integers, is called B-bounded if

Pr
e

$←−Dn
[|e| > B] = negl(n).

Definition 6.2.3 (GapSVPγ). Let n be a lattice dimension, and let d be a real number.

Then GapSVPγ is the problem of deciding whether an n-dimensional lattice has a nonzero

vector shorter than d (an algorithm should accept in this case) or no nonzero vector

shorter than γ(n) · d (an algorithm should reject in this case); an algorithm is allowed to

error otherwise.

Theorem 6.2.1 (Theorem 1 [98]). Let q = q(n) ∈ N be either a prime power or a product

of small (poly(n)) distinct primes, and let B ≥ ω(log n) ·
√
n. Then there exists an

efficient sampleable B-bounded distribution χ such that if there is an efficient algorithm

that solves the average-case LWEn,q,χ problem, then:

• There is an efficient quantum algorithm that solves GapSVPÕ(nq/B) on any n-

dimensional lattice.

• If q > Õ(2n/2), then there is an efficient classical algorithm for GapSVPÕ(nq/B)

on any n-dimensional lattice.

6.2.2 GSW Approximate Eigenvector Cryptosystem

Recall our brief overview of the GSW IBFHE construction earlier from Section 6.1.1.1.

The following exposition describes this construction in more detail. Note that the public-

key GSW scheme is similar to the identity-based variant. As such, to simplify the

notation, the following discussion deals with the public-key setting, but the ideas apply

to both.
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Definition 6.2.4 (Section 1.3.2 from [98]). B-boundedness: Let B < q be an integer.

Let C be a ciphertext matrix that encrypts µ. Let ~v be a secret key vector such that

C · ~v = µ · ~v + ~e. Then C is said to be B-bounded (with respect to ~v) if the magnitude

of µ is at most B, the magnitude of all the entries of C is at most B, and ‖|~e‖|∞ ≤ B.

Let C1 and C2 be two B-bounded ciphertext matrices. Then C+ = C1 + C2 is 2B-

bounded. Furthermore, C× = C1 ·C2 is (N+1)B
2
-bounded. As the authors of [98] point

out, the error grows worse than B2L , where L is the multiplicative depth of a circuit

being evaluated. The modulus q can be chosen to exceed this bound, but we must

be careful to ensure that the ratio q/B is at most subexponential in N to guarantee

security (see Theorem 6.2.1). Hence, only circuits of logarithmic multiplicative depth

can be evaluated. This gives us a somewhat-homomorphic scheme.

To evaluate deeper circuits, namely those with polynomial multiplicative depth, we

must keep the entries of the ciphertext matrices “small”. To achieve this, Gentry, Sahai

and Waters propose a technique called flattening. Consider the following definition.

Definition 6.2.5 (Section 1.3.3 from [98]). B-strong-boundedness: Let B < q be an

integer. Let C be a ciphertext matrix that encrypts µ. Let ~v be a secret key vector such

that C · ~v = µ · ~v + ~e. Then C is said to be B-strongly-bounded (with respect to ~v) if

the magnitude of µ is at most 1, the magnitude of all the entries of C is at most 1, and

‖|~e‖|∞ ≤ B.

An example of a B-strongly-bounded ciphertext is a matrix C with binary entries

that encrypts a plaintext bit µ ∈ {0, 1}, provided the coefficients of its corresponding ~e

vector have magnitude at most B. Let C1 and C2 be ciphertext matrices that encrypt

µ1 ∈ {0, 1} and µ2 ∈ {0, 1} respectively. A NAND gate can be evaluated on two

ciphertexts C1 and C2 as follows:

C3 = IN −C1 ·C2,

where IN is the N ×N identity matrix. The matrix C3 encrypts ¯µ1 ∧ µ2 ∈ {0, 1}. Now

if C1 and C2 are B-strongly-bounded, then the coefficients of C3’s error vector have
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magnitude at most (N +1)B, which is in contrast to (N +1)B2 above where C1 and C2

were just B-bounded. Suppose there were some way to preserve strong-boundedness in

C3 (i.e. to ensure the magnitude of its entries remained at most 1). Then it would be the

case that C3 is (N+1)B-strongly-bounded. As a result, the error level would grow to at

most (N+1)LB when evaluating a circuit of NAND gates of depth L. Therefore it would

be possible to evaluate circuits of polynomial depth by letting q/B be subexponential.

However, how can we preserve strong-boundedness? It is necessary to introduce some

basic operations to help describe how strong boundedness is preserved. These operations

serve as useful tools for our own constructions later.

6.2.2.1 Basic Operations

Let `q = blg qc + 1. Let ~v ∈ Zm′q be a vector of some dimension m′ over Zq. Let

N = m′ · `q.

• BitDecomp(~v): We define an algorithm BitDecomp that takes as input a vector ~v ∈

Zm′q and outputs an N -dimensional vector (v1,0, . . . , v1,`q−1, . . . , vk,0, . . . , vk,`q−1)

where vi,j is the j-th bit in vi’s binary representation (ordered from least significant

to most significant).

• BitDecomp−1(~v′): We define an “inverse” algorithm BitDecomp′ that takes an

N -dimensional vector ~v′ = (v′1,0, . . . , v
′
1,`q−1, . . . , v

′
k,0, . . . , v

′
k,`q−1), and outputs a

m′-dimensional vector (
∑`q−1

j=0 2j · v′1,j , . . . ,
∑`q−1

j=0 2j · v′k,j). Note that the input

vector ~v′ need not be binary, the algorithm is well-defined for any input vector in

ZNq .

• Flatten(~v′): The algorithm Flatten takes as input anN -dimensional vector ~v′ ∈ ZNq
and outputs an N -dimensional binary vector BitDecomp(BitDecomp′(~v′) ∈ {0, 1}N .

• Powersof2(~v): The algorithm Powersof2 takes a m′-dimensional vector ~v ∈ Zm′q
and outputs anN -dimensional vector (v1, 2v1, . . . , 2

`q−1v1, . . . , vk, 2vk, . . . , 2
`q−1vk).
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We also define BitDecomp, BitDecomp′ and Flatten for matrix inputs; in this case, the

respective algorithm is applied to each row independently.

We restate the following straightforward facts from [98] (Section 1.3.3): Let ~a, ~b ∈

Zm′q be m′-dimensional vectors, and let ~a′ ∈ ZNq be an N -dimensional vector:

• 〈BitDecomp(~a),Powersof2(~b)〉 = 〈~a, ~b〉.

• 〈~a′,Powersof2(~b)〉 = 〈BitDecomp−1(~a′), ~b〉 = 〈Flatten(~a′),Powersof2(~b)〉.

6.2.2.2 Flattening

With the help of BitDecomp, BitDecomp−1, Powersof2 and Flatten, we can tackle the

problem of preserving strong boundedness after a NAND operation. In order to make

the coefficients of C3 above have magnitude at most 1, Gentry, Sahai and Waters propose

to apply Flatten to the matrix C3. Thus, we compute CNAND ← Flatten(C3) to produce

the output ciphertext of the NAND gate. Now for this to work, the vector ~v must

have a special form. More precisely, ~v is computed as Powersof2(~s) ∈ ZNq for some

secret key vector ~s ∈ Zm′q for some m′. Furthermore, the parameter N is defined as

N = m′ · `q, where `q = blg qc + 1. With this form of secret key vector ~v, it holds that

Flatten(C) · ~v = C · ~v for any N × N matrix C. So CNAND will have entries in {0, 1}

and thus be strongly-bounded.

6.2.3 GSW Compiler for IBE in the Single-Identity Setting

The Gentry, Sahai and Waters (GSW) compiler from Crypto 2013 [98] (Section 4) allows

transformation of an IBE scheme based on the Learning with Errors (LWE) problem into

a related IBFHE scheme, provided the IBE scheme satisfies the following properties:

1. Property 1 (Ciphertext and secret key vectors): The secret key for identity

id and a ciphertext created under id are vectors ~sid, ~cid ∈ Zm′q for some m′. The

first coefficient of ~sid is 1.
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2. Property 2 (Small Dot Product): If ~cid encrypts 0, then 〈 ~cid, ~sid〉 is “small”.

3. Property 3 (Security): Encryptions of 0 are indistinguishable from uniform

vectors over Zq under the hardness of LWE.

As noted in [98] all known LWE-based IBE schemes satisfy the above properties e.g:

[7, 8, 56,97].

Let E be an IBE satisfying the Properties 1-3 above. Then E can be transformed

into a single-identity IBFHE scheme E ′.

The public parameters PP generated by E .Setup includes a modulus q and an integer

m′ representing the length of both secret key and ciphertext vectors in E . Let `q =

blg qc+ 1 and N = m′ × `q.

To encrypt a message µ ∈ {0, 1} under identity id ∈ I, the encryptor generates N

encryptions of 0 using E . More precisely, she computes ~ei ← E .Encrypt(PP, id, 0) ∈ Zm′q
for every i ∈ [N ]. The set of N vectors ~e1, . . . , ~eN form the rows of an N ×m′ matrix

E ∈ ZN×m′q . Finally the encryptor computes the N×N ciphertext matrix C ∈ {0, 1}N×N

as follows

C← Flatten(µ · IN + BitDecomp(E))

where IN denotes the N ×N identity matrix.

A secret key in E ′ for identity id is an N -dimensional vector ~vid derived from a secret

key ~sid for identity id in E . This is computed as ~vid ← Powersof2( ~sid). Decryption of a

ciphertext C with ~vid is as follows. By construction of ~vid, it has at least one “large”

coefficient; denote this by vid,i, To perform decryption, we take the i-th row ~ci of matrix

C, compute the inner product x ← 〈~ci, ~vid〉 = µ · vid,i + ei and output the plaintext

µ← bx/vid,ie. This is correct because

C · ~vid = µ · ~vid + E · ~sid = µ · ~vid + “small”

where E· ~sid is “small” as a consequence of Property 2. It is also easy to see that semantic

security for E ′ follows immediately from the fact that E satisfies Property 3.
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6.3 A Compiler for Multi-Identity Leveled IBFHE

In this section, we present a new compiler that can transform an LWE-based IBE into

a multi-identity IBFHE. As we will see, achieving multi-identity IBFHE is far more

difficult than single-identity IBFHE.

6.3.1 Intuition

Suppose E is an LWE-based IBE that satisfies properties 1 - 3 above. We can apply

the GSW compiler to yield an IBFHE scheme E ′ in the single-identity setting. Our goal

is to construct a compiler for the multi-identity setting. Consider two ciphertexts C1

and C2 that encrypt µ1 and µ2 under identities id1 and id2 respectively. Let ~s1 and

~s2 be secret keys in the scheme E for identities id1 and id2 respectively. Accordingly,

a decryptor can compute ~v1 ← Powersof2(~s1) and ~v2 ← Powersof2(~s2). It holds that

C1 · ~v1 = µ1 · ~v1 + ~e1 and C2 · ~v2 = µ2 · ~v2 + ~e2 where ~e1, ~e2 ∈ ZNq are short vectors.

We would like to be able to perform homomorphic computation on both C1 and

C2 together; that is, use them both as inputs in the same circuit. Here we denote the

circuit by C ∈ C. We expect the size of the resulting ciphertext to grow if id1 6= id2.

This is intuitive because the resulting ciphertext must encode information about both

identities. Assume that id1 6= id2. The compactness condition of multi-identity IBFHE

allows the size of the resulting ciphertext to depend polynomially on the number of

distinct identities d (in this case d = 2). Suppose we could produce a resulting 2N×2N

ciphertext matrix C′ ∈ Z2N×2N
q that encrypts µ′ = C(µ1, µ2). More precisely, suppose

that

C′ ·

 ~v1

~v2

 = µ′ ·

 ~v1

~v2

+ ~e′

where ~e′ is “short”. The size of the ciphertext matrix is quadratic in the number of

distinct identities, and thus satisfies the compactness condition. How can such a matrix

C′ be computed?
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The main idea behind our approach is to transform each input ciphertext matrix (i.e.

C1 and C2 in this example) into a corresponding dN × dN “expanded matrix” where

d is the number of distinct identities (i.e. d = 2 in our example).

Consider any input ciphertext matrix C ∈ ZN×Nq that encrypts a plaintext µ under

identity id1. We denote by Ĉ ∈ Z2N×2N
q its corresponding “expanded matrix”. We

require this expanded matrix to satisfy

Ĉ ·

 ~v1

~v2

 = µ ·

 ~v1

~v2

+ “small”.

Now Ĉ can be viewed as consisting of 2 × 2 submatrices in ZN×Nq . We denote the

submatrix on row i and column j as Ĉi,j ∈ ZN×Nq . To satisfy the “top” part of the

above equation, it is sufficient to set Ĉ1,1 ← C and Ĉ1,2 ← 0. To satisfy the “bottom”

part of the equation, we need to find matrices X,Y ∈ {0, 1}N×N such that

X · ~v1 + Y · ~v2 = µ · ~v2 + “small”.

We refer to a pair of solution matrices (X,Y) as a “mask” because of the fact that they

hide the plaintext µ from a party that does not have a secret key for the recipient identity.

In this section, we will abstract over the process of finding solution matrices X and Y

with respect to arbitrary identities. Towards this goal, we introduce an abstraction

called a masking system. In short, a masking system allows an encryptor to produce

information U ∈ {0, 1}∗ that allows an evaluator to derive matrices X and Y that solve

the above equation with respect to any arbitrary identity. Informally, an adversary

without a secret key for the recipient identity (id1 in the above example) learns nothing

about µ given U , but can still efficiently derive solution matrices X and Y with respect

to any chosen identity. This notion is formalized in the next section, where we present

our compiler. A concrete construction of a masking system is presented in Section 6.4.2.
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6.3.2 Abstract Compiler

We start by describing an abstract framework for multi-identity IBFHE from Learning

with Errors (LWE). Our compiler uses the aforementioned abstraction which we call a

masking system. An additional prerequisite for an IBE scheme E (beyond Properties

1-3) to work with our compiler is that there exists a masking system MSE for E . First

we provide a formal definition of a masking system.

Definition 6.3.1. Let E be an IBE scheme satisfying Properties 1-3. A masking system

for E is a pair of PPT algorithms (GenUnivMask,DeriveMask) defined as follows:

• GenUnivMask(PP, id, µ) takes as input public parameters PP for E, an identity id ∈

I and a message µ ∈ {0, 1}, and outputs U ∈ {0, 1}∗ (referred to as a universal

mask).

• DeriveMask(PP, U, id′) takes as input public parameters PP for E, a universal mask

U ∈ {0, 1}∗ and an identity id′ ∈ I, and outputs a pair of matrices (X,Y) ∈

(ZN×Nq )2.

A masking system (GenUnivMask,DeriveMask) must satisfy the following properties:

• Correctness: Let w(·) be a polynomial associated with the masking system. Let

w = w(λ). We refer to w as the error expansion factor. For correctness, it is re-

quired that for any (PP,MSK)← E .Setup(1λ), any identities id, id′ ∈ I, any secret

keys ~vid ← Powersof2(E .KeyGen(MSK, id)) ∈ ZNq and ~vid′ ← Powersof2(E .KeyGen(MSK, id′)) ∈

ZNq , and any µ ∈ {0, 1}, and over all

– U ← GenUnivMask(PP, id, µ),

– (X,Y)← DeriveMask(PP, U, id′)

it holds that

X ~vid + Y ~vid′ = µ · ~vid′ + ~e (6.3.1)

where ‖|~e‖|∞ ≤ w ·B.
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• Security: The masking system is said to be secure if all PPT adversaries have

a negligible advantage in the following modified IND-X-CPA game for E where

X ∈ {sID, ID}. The only change in the security game is that the adversary is given

U∗ ← GenUnivMask(PP, id∗, µb) in place of the challenge ciphertext in the original

game, where b
$←− {0, 1} is the challenger’s random bit, id∗ is the adversary’s target

identity, and µ0 and µ1 are the challenge messages chosen by the adversary.

Our compiler can compile an IBE scheme E into a IBFHE scheme E ′ if the following

conditions are met (for completeness, we restate Properties 1-3 above):

CP.1: (Ciphertext and secret key vectors): The secret key for identity id and

a ciphertext created under id are vectors ~sid, ~cid ∈ Zm′q for some m′. The first

coefficient of ~sid is 1.

CP.2: (Small Dot Product): . If ~cid encrypts 0 under identity id, then ~e = 〈 ~cid,~sid〉

is “small” where ~sid is generated as in CP.1. Formally, ~e is B-bounded; that is,

‖|~e‖|∞ ≤ B.

CP.3: (Security): Encryptions of 0 are indistinguishable from uniform vectors over Zq

under the hardness of LWE.

CP.4: (Masking System): There exists a masking system (GenUnivMask,DeriveMask)

for E meeting the correctness and security conditions of Definition 6.3.1.

Let MSE = (MSEGenUnivMask,MSEDeriveMask) be a masking system for E that sat-

isfies CP.4. A formal description is now given of a generic scheme, which we call mIBFHE,

that uses E and MSE . We have mIBFHE.Setup = E .Setup and mIBFHE.KeyGen =

E .KeyGen. The remaining algorithms are described as follows.
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6.3.2.1 Encryption

To encrypt a message µ under identity id ∈ I, an encryptor performs the following steps.

The encryptor computes the universal mask

U ← MSE .GenUnivMask(PP, id, µ)

and outputs the ciphertext CT := (〈id〉, type := 0, enc := U). Setting the type component

of CT to 0 indicates a “fresh” ciphertext.

6.3.2.2 Evaluation

The evaluator is given as input a circuit C ∈ C and a collection of ` ciphertexts CT1 :=

(〈id1〉, type := 0, enc := U1), . . . ,CT` := (〈id`〉, type := 0, enc := U`).

Consider the set of distinct identities I = {id1, . . . , id`}. Suppose that |I| = d ≤ `

is the number of distinct identities. If d > D (i.e. the maximum supported degree

of composition is exceeded), the evaluator aborts the evaluation. For simplicity we re-

label the distinct identities as id1, . . . , idd . Thus, each distinct identity in the collection

is associated with a unique index in [d ]. Before evaluation can be performed, each

ciphertext must be “transformed” into a dN × dN matrix, which we call an expanded

matrix. This is achieved as follows.

Let (〈idr〉, type := 0, enc := U) be a ciphertext whose associated identity has been

assigned the index r ∈ [d ]. A matrix Ĉ ∈ ZdN×dN
q is formed as follows. Start by setting

Ĉ to the zero matrix. Now Ĉ can be viewed as consisting of d ×d submatrices in ZN×Nq .

We denote the submatrix on row i and column j as Ĉi,j ∈ ZN×Nq .

For i ∈ [d ]:

1. Run (Xi,Yi)← MSE .DeriveMask(PP, U, idi).

2. Set Ĉi,i ← Yi.

3. Set Ĉi,r ← Flatten(Ĉi,r+Xi). (The reason for addition here is to handle the special

case of i = r).

136



This completes the process for computing the expanded matrix Ĉ. Consider an example

where r = 1 and d > 2. The expanded matrix looks like the following:

Ĉ =


(Flatten(X1 + Y1)

X2 Y2

...
. . .

Xd Yd


Perform the steps above to produce the expanded matrix Ĉ(i) for every input ci-

phertext CTi. Then the circuit C ∈ C is evaluated gate-by-gate (NAND gates) on

the expanded matrices to yield a dN × dN matrix Ĉ′. Suppose each Ĉ(i) encrypts

µi ∈ {0, 1}. Then Ĉ′ encrypts C(µ1, . . . , µ`). Finally, the evaluation algorithm outputs

the tuple CT′ := (〈id1, . . . , idd 〉, type := 1, enc := Ĉ′). Setting the type component to 1

indicates an evaluated ciphertext. Note that the scheme is 1-hop homomorphic.

6.3.2.3 Decryption

On input a ciphertext CT := (〈id1, . . . , idd 〉, type, enc) and a sequence of secret keys

~vid1 , . . . , ~vidd ∈ ZNq where ~vidi is a secret key for idi for i ∈ [d ], the decryptor performs

the following steps. Form the column vector ~v as the vertical concatenation of the

column vectors ~vid1 , . . . , ~vidd . If type = 0, parse enc as the universal mask U , compute

(X,Y) ← MSE .DeriveMask(PP, U, id1) and set C ← X + Y. Else if type = 1, parse enc

as Ĉ and set C← Ĉ.

Recall that the first `q components of ~v are 1, . . . , 2`q−1. Let i be an index such that

vi = 2i ∈ (q/4, q/2]. Compute di ← 〈~ci, ~v〉 where ~ci is the i-th row of C and output

µ′ ← bdi/vie ∈ {0, 1}. This works to recover the message because as a result of Equation

6.3.1 (in Definition 6.3.1), we have

C~v = µ · ~v + ~e

with ‖|~e‖|∞ ≤ w ·B, where w is the error expansion factor associated with the masking

system MSE .

137



6.3.2.4 Correctness

Lemma 6.3.1. Let B be a bound such that all freshly encrypted ciphertexts are B-

strongly-bounded. Let D and L be positive integers. If q > 8 · w · B(DN + 1)L∗, then

the scheme mIBFHE is correct and can evaluate NAND-based Boolean circuits of depth

L with any degree of composition d ≤ D.

Proof. Let the d ≤ D distinct identities involved in an evaluation be id1, . . . , idd . Con-

sider an expanded matrix derived from a “fresh” ciphertext CT = (〈idi〉, type := 0, enc :=

U) associated with identity idi for some i ∈ [d ]. Let ~vj be a secret key that decrypts

ciphertexts with identity idj for j ∈ [d ]. Let ~̂v be the column vector consisting of the

concatenation of ~v1, . . . , ~vd . Let Ĉ be the expanded matrix for CT computed with re-

spect to identities id1, . . . , idd and (Xj,Yj) ← MSE .DeriveMask(PP, U, idj) for j ∈ [d ] .

Now by construction, Ĉ consists of d × d submatrices in ZN×Nq . There are 2 non-zero

submatrices on N − 1 rows when Ĉ is viewed as d × d matrix over ZN×Nq , and one

non-zero submatrix on the i-th row. The correctness condition for the masking system

MSE gives us

Flatten(Y1 X1)

. . .
...

Xi + Yi

...
. . .

Xd Yd


·



~v1

...

~vi

...

~vd


=



X1 ~v1 + Y1 ~v1

...

Xi ~vi + Yi ~vi

...

Xd ~vd + Yd ~vd


= µ·



~v1

...

~vi

...

~vd


+ ’small’ .

Since each of these submatrices is B-strongly-bounded, it follows that Ĉ · ~̂v = µ · ~̂v + ~̂e

where the coefficients of the error vector ~̂e are bounded by w ·B.Therefore,
~̂
C is w ·B-

strongly-bounded. Multiplying two dN × dN expanded matrices in a NAND operation

produces a matrix that is w · B(dN + 1)-strongly-bounded. After L successive levels,

∗Note that N (which depends on n) is itself dependent on lg q. For security, it is required that

q/B = 2n
ε

for some ε ∈ (0, 1). A discussion on parameters is provided in Section 6.5.
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the bound on the error is w · B(dN + 1)L. For correctness of decryption we need

w ·B(dN + 1)L < q/8. Since we have d ≤ D, it follows that

w ·B(dN + 1)L ≤ w ·B(DN + 1)L ≤ 8 · w ·B(DN + 1)L

8
<
q

8
.

Theorem 6.3.1. Let E be an IBE scheme satisfying CP.1 - CP.4. Then E can be

transformed into a multi-identity IBFHE scheme E ′.

Proof. The proof of the theorem is constructive. By CP.4, there exists a masking system

MSE for E . The multi-identity IBFHE scheme E ′ that we obtain is mIBFHE instantiated

with E and MSE . By Lemma 6.3.1, the scheme is correct. CP.4 implies that E ′ is

IND-X-CPA secure for some X ∈ {sID, ID}.

6.4 Concrete Construction of Multi-Identity Leveled IBFHE

To exploit our compiler from the last section to obtain a multi-identity IBFHE, we need

to find an LWE-based IBE scheme E that satisfies CP.1 - CP.4. The major obstacle

is finding a scheme for which a secure masking system can be constructed. A natural

starting point is the IBE of Cash, Hofheinz, Kiltz and Peikert (CHKP) [56], which is

IND-ID-CPA secure in the standard model. This IBE was adapted by Gentry, Sahai

and Waters ( [98] Appendix A.1) to work with their compiler. There are difficulties

however in developing a secure masking system for this IBE. Instead, we consider the

IBE of Gentry, Peikert and Vaikuntanathan (GPV) [97]. Unfortunately this scheme is

only secure under LWE in the random oracle model. On the plus side, we show that it

enjoys the distinction of admitting a secure masking system, and as a consequence of

Theorem 6.3.1 can be compiled into a multi-identity IBFHE scheme.
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6.4.1 The Gentry, Peikert and Vaikuntanthan (GPV) IBE

In the GPV scheme, the TA needs to use a lookup table † to store secret keys that are

issued to users in order to ensure that only a single unique secret key is ever issued for

a given identity. This is required for the security proof in the random oracle model.

A hash function H : {0, 1}∗ → Znq (modeled as a random oracle in the security

proof) is used to map an identity string id ∈ {0, 1}∗ to a vector ~zid ∈ Znq . Due to space

constraints a formal description of the GPV scheme is deferred to Appendix ??. It is

easy to see that GPV fulfills CP.1 and CP.2. Furthermore, GPV can be shown to be

IND-sID-CPA secure in the random oracle model [97] under LWE, and CP.3 follows from

the security proof. It remains to construct a masking system for GPV.

6.4.2 A masking system for GPV

6.4.2.1 Relaxation: support for a single identity

As a warm up, we consider a relaxation of a masking system. In this relaxation, it is

sufficient to find X and Y for only one identity id′, specified by the encryptor. More

precisely, let id be the recipient’s identity and let id′ 6= id be another identity known to

the encryptor. Furthermore, let ~v be a secret key for id and let ~v′ be a secret key for

id′. Then the goal is to allow the evaluator to find matrices X and Y satisfying

X · ~v + Y · ~v′ = µ · ~v′ + “small”,

where µ is the plaintext. For every i ∈ N , we need to find row vectors ~xi and ~yi with

〈~xi, ~v〉+ 〈~yi, ~v′〉 = µ · ~v′ + “small”.

A trivial way to do this is for the encryptor to set ~xi ← ~0 and ~yi ← Flatten(( 0︸︷︷︸
1,...,i−1

, µ, 0︸︷︷︸
i+1,...,N

)+

BitDecomp(E .Encrypt(PP, id′, 0)) ∈ {0, 1}N where the latter is a GSW row encryption of

µ under identity id′. Observe that such an ~xi and ~yi serve as a solution to the above

†Alternatively with the additional assumption of a PRF, a lookup table could be avoided by deter-

ministically deriving secret keys (i.e. obtaining random coins from the PRF).
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equation. However, it is easy to see that such a trivial solution violates semantic security,

since a decryptor with a secret key ~v′ for id′ (and no secret key for id) can still recover

the plaintext µ.

One strategy for remedying the above approach is to prevent a key holder for identity

id′ from recovering µ from ~yi by appropriately hiding some components of ~yi. Let us

take a look at the structure of ~yi when E is GPV. It is of the form

Flatten(( 0︸︷︷︸
1,...,i−1

, µ, 0︸︷︷︸
i+1,...,N

) + BitDecomp((〈 ~zid′ ,~r〉+ e,~r ·A +~f) ∈ Zm
′

q )

where e
$←− χ, ~f

$←− χm, ~r
$←− Znq and ~zid′ = H(id′) ∈ Znq . Suppose we instead generate ~yi

as

~yi ← Flatten(( 0︸︷︷︸
1,...,i−1

, µ, 0︸︷︷︸
i+1,...,N

) + BitDecomp((0,~r ·A +~f).

Now what we have done here is effectively set the first `q components of ~yi to 0 with

the exception of the special case i ∈ [`q] which we will handle separately later. As a

result of this modification, we will have 〈~yi, ~v′〉 ≈ −〈 ~zid′ ,~r〉 + µ · 2i mod `q (the symbol

≈ denotes equality up to “small” differences). Therefore, to cancel out the term 〈 ~zid′ ,

〉, weneedtoensurethatwesetsuchthat〈~xi, ~v〉 ≈ 〈 ~zid′ ,~r〉.

The approach we take to achieve this is to blind the element 〈 ~zid′ ,~r〉 with a a GPV

encryption of zero under identity id such that it can only be unblinded with a secret

key for identity id (note that the value cannot be recovered outright; instead a noisy

approximation is obtained). For simplicity we define the algorithm Blind which takes an

identity id and a value v ∈ Zq and outputs a vector Flatten((c1 + v, c2, . . . , cm′)) where

~c← E .Encrypt(PP, id, 0). So to provide an ~xi counterpart to the vector ~yi we generated

above, we set ~xi ← Blind(id, (〈 ~zid′ ,~r〉) where ~r is the vector used in the generation of ~yi

above. It follows that 〈~xi, ~v〉+ 〈~yi, ~v′〉 = µ · ~v′ + “small”.

There are subtleties that we have overlooked. For security reasons, we need to change

how we generate ~xi and ~yi for i ∈ [`q]. This is because for the first `q components of

~yi as generated above, the plaintext µ is not hidden; it is effectively sent in the clear.
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However we can resolve this issue by setting ~xi ← Blind(id, µ · 2i−1 ~yi ← ~0 and simply

setting ~yi ← ~0.

However there is still a major weakness in this approach. Suppose a decryptor has

access to two decryption vectors ~u′, ~v′ ∈ ZNq that decrypt ciphertexts with identity id′.

For example, the TA might have generated distinct secret key vectors when issuing keys

to different parties, and the parties may have shared that information.

It is easy to see that

Y · ~u′ −Y · ~v′ = µ · (~u′ − ~v′) + “small”,

which allows the decryptor to easily determine µ ∈ {0, 1}. Hence a necessary condition

for the approach to work is that there be a unique secret key vector for every identity.

In fact, this is the primary reason our techniques do not work for ABE. Technically,

this restriction means that the system can only support simple classes of access policies,

namely classes of predicates with disjoint support sets, which includes the special case of

IBE. Fortunately, in the GPV scheme, only a single secret key is ever issued for a given

identity.

6.4.2.2 Support for all identities

The algorithm above allows an encryptor to create a secure “mask” for a specific iden-

tity that he knows. But how can we create a succinct “universal mask” from which

“masks” for arbitrary identities can be derived? To achieve this, we need to take

a look at the structure of vector ~xi in our masking system, which is constructed as

~xi ← Blind(id, 〈 ~zid′ ,~r〉) where id′ is known to the encryptor. But what if id′ is an arbi-

trary identity (i.e. not simply one that is known beforehand by the encryptor but one

that is chosen by the evaluator at evaluation time)? In this case, we need to obtain an

~xi that blinds 〈 ~zid′ ,~r〉. Our goal is to include information in the universal mask that

we derive so that for any identity id′ one can derive an ~xi that blinds 〈 ~zid′ ,~r〉 where

~zid′ = H(id′).
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Recall the following property of BitDecomp from Section 6.2.2.1:

〈 ~zid′ ,~r〉 = 〈BitDecomp( ~zid′),Powersof2(~r)〉.

Our approach is to blind each coefficient of Powersof2(~r), whose length is `q · n. We

produce a matrix B(i) ∈ Z(`q ·n)×m′
q by letting

~
b

(i)
j ← BitDecomp−1(Blind(id, pj)) where

pj be the j-th coefficient of Powerof2(~r). Then to generate ~xi, one computes ~xi ←

Flatten(BitDecomp( ~zid′) ·B(i)). Note that ~yi is generated as before.

More precisely what we have is shown is how to generate B(i) and ~yi for i ∈ [`q].

Recall that in our previous masking system we generated ~xi and ~yi differently for i ∈ [`q].

This will also apply here. Instead of computing B(i) for i ∈ [`q], we instead merely

compute ~xi ← Blind(id, µ · 2i−1) and ~yi ← ~0. This completes the description of our

masking system.

We now formally present our masking system for GPV. (which we call MSGPV). Let

η = `q · n.

MSGPV.GenUnivMask(PP, id, µ) :

1. For i ∈ [`q]:

(a) Set ~xi ← Blind(id, µ · 2i−1)

(b) Set ~yi ← ~0

2. For `q < i ≤ N :

(a) Generate ~r
$←− Znq and sample a short error vector ~e

$←− χm′ .

(b) For j ∈ [η] :

i. Set
~

b
(i)
j ← BitDecomp−1(Blind(id, pj)) ∈ Zm′q where pj be the j-th coeffi-

cient of Powerof2(~r)

(c) Form matrix B(i) from rows
~

b
(i)
1 , . . . ,

~
b

(i)
η .

(d) Set ~yi ← Flatten(( 0︸︷︷︸
1,...,i−1

, µ, 0︸︷︷︸
i+1,...,N

) + BitDecomp((0,~r ·A +~f)))
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3. Form matrix Y from rows ~y1, . . . , ~yN.

4. Output U := ( ~x1, . . . , ~x`q ,Y,B(`q+1), . . . ,B(N)).

MSGPV.DeriveMask(PP, U, id′) :

1. Parse U as ( ~x1, . . . , ~x`q ,Y,B(`q+1), . . . ,B(N)).

2. Compute ~zid′ ← H(id′).

3. For `q < i ≤ N :

(a) Set ~xi ← Flatten(BitDecomp( ~zid′) ·B(i))

4. Form X ∈ {0, 1}N×N from ~x1, . . . , ~xN.

5. Output (X,Y).

It is easy to see from the definition of MSGPV.DeriveMask that the error expansion

factor is w = η + 1. This is because each row in an expanded matrix is formed from a

row of X and a row of Y. But the former decomposes into a sum of η ciphertexts (and

hence error terms).

Theorem 6.4.1. [Informal] The masking system MSGPV is selectively secure in the

random oracle model (i.e. MSGPV meets the security condition of Definition 6.3.1).

A formal statement of Theorem 6.4.1 along with the proof is given in Section 6.7.

6.4.3 Applying the Compiler

It is now possible to put all the pieces together. In more detail, we can now apply

our compiler to the IBE scheme GPV with the masking system MSGPV to yield an

IND-sID-CPA secure multi-identity IBFHE in the random oracle model.
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Theorem 6.1.1. There exists a multi-identity leveled IBFHE scheme that is IND-sID-CPA

secure in the random oracle model under the hardness of LWE.

Proof. Let D be a maximum degree of composition to support, and let L be a desired

number of levels. Let λ be the security parameter. We show there exists a leveled IBFHE

scheme with maximum degree of composition D, maximum circuit depth L and security

parameter λ.

Choose dimension parameter n = n(λ, L) and bound B = B(n). Lemma 6.3.1

requires

q > 8 · w ·B(DN + 1)L (6.4.1)

to ensure correctness. Note that w is the expansion factor of the masking system. Now

the error expansion factor of MSGPV is w = η + 1. But this can be simplified to N ‡.

Theorem 6.4.1 requires m ≥ 2n lg q, and we have N = (m + 1) lg q. We need to set q

first before setting these parameters (m and N) because of their dependence on q. To do

so, q must be expressed without dependence on N . It can be straightforwardly derived

from the inequality 6.4.1 that a suitable q is given by

q = B · 2O(L lgnD)

with additional care taken to ensure q/B is subexponential in n.

Our parameter settings ensure that the GPV scheme meets CP.1, CP.2 and CP.3,

three of the prerequisites for our compiler in Section 6.3. Furthermore, the masking

system MSGPV is secure (via Theorem 6.4.1). As a result, CP.4 is additionally satisfied.

Therefore, Theorem 6.3.1 ensures there exists a secure leveled IBFHE scheme, which by

virtue of our parameter settings above (which meet Lemma 6.3.1), can correctly evaluate

L-depth circuits over ciphertexts with at most D distinct identities .

‡w = η + 1 = `q · n+ 1 ≤ `q ·m < N .
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6.4.4 Multi-Key FHE

If we replace the GPV IBE with the Dual-Regev public-key encryption scheme from

[97], then we can obtain a multi-key FHE. The only change in the masking system is

that identity vectors (i.e. ~zid = H(id) ∈ Znq ) are replaced with public-key vectors in

Znq . As a result, the random oracle H is no longer needed, and security holds in the

standard model. However the ciphertexts are prohibitively large; see Section 6.5.5 for

an illustration of the extent of their impracticality. To reduce the ciphertext size, we

adapt the scheme to work over polynomial rings instead of vectors.

Our compiler is compatible with several public-key RLWE schemes including the

scheme of Lyubashevsky, Peikert and Regev (LPR) [136], which Gentry, Sahai and Wa-

ters adapt to the approximate eigenvector framework in [98]. The only issue we need

focus on here that is not discussed in [98] is our masking system. Fortunately the ap-

proach underlying our masking system for GPV is directly applicable to LPR. Instead

of blinding inner products over Zq, one blinds products in the ring Rq = Zq[x]/f(x). In

LPR, the modulus polynomial is f(x) = xd + 1 for some d = d(λ). The public param-

eters include a uniformly random element a(x) ∈ Rq. The public key of a user is an

element b(x) ∈ Rq of the form b(x) = a(x)s(x) + e(x), where the secret key s(x) is a

uniformly random polynomial in Rq and e(x) is an error polynomial drawn from an error

distribution χR (analogous to χ but defined over R = Z[x]/f(x)). A ciphertext ~c in LPR

that encrypts zero under the public key b(x) is a pair of elements (c1(x), c2(x)) ∈ Rq

where c1(x) = b(x)r(x) + e1(x) and c2(x) = a(x)r(x) + e2(x) with r(x), e1(x), e2(x) in-

dependently sampled from χR . This scheme can be compiled via the GSW compiler

to yield a fully-homomorphic system whose ciphertexts are 2`q × 2`q matrices over Rq,

where `q = blg qc+ 1.

Let pk = b(x) ∈ Rq be the public key of the recipient in the following discussion.

Recall the masking system from Section 6.4.2. Adapting it to the scheme above, a

universal mask consists of two matrices Y ∈ R
2`q×2
q and B ∈ R

(η·2`q)×2
q with η = `q.
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Consider the i-th row ~yi ∈ R2
q of Y for i > `q. The second column of ~yi is of the form

a(x)r(x)+e(x)+µ′ for some r(x), e(x)
$←− χR where µ′ = µ ·2i mod `q is a shifted version

of the message µ ∈ {0, 1}. Let pk′ = b′(x) ∈ Rq be an arbitrary public key. Our goal is to

produce an LPR ciphertext that blinds the product b′(x)r(x) ∈ Rq. This can be obtained

from a set of `q ciphertexts {(e(j)
1 (x), e

(j)
2 (x))}0≤j<`q in which (e

(j)
1 (x), e

(j)
2 (x)) blinds the

element 2jr(x) ∈ Rq for 0 ≤ j < `q More precisely to compute a ciphertext (t1(x), t2(x))

that blinds the product b′(x)r(x), one computes t1(x) ←
∑d−1

k=0

∑`q−1
j=0 b′k,je

(j)
1 (x)xk and

t2(x) ←
∑d−1

k=0

∑`q−1
j=0 b′k,je

(j)
2 (x)xk where b′(k,j) ∈ {0, 1} is the j-th bit of b′k for 0 ≤

k < d and 0 ≤ j < `q. The elements {(e(j)
1 (x), e

(j)
2 (x))}0≤j<`q form the rows of a

`q × 2 submatrix of the blinding matrix B; this submatrix corresponds to the i-th row.

However, since there are 2`q rows in Y, this means that B is a (2`q · `q)× 2 matrix over

Rq. Furthermore, Y is a 2`q × 2 matrix over Rq. Since a fresh ciphertext in our scheme

consists of the pair (B,Y), we have that it consists of ((2`q · `q) · 2) + 4`q = 4`q(1 + `q)

elements of Rq. Choosing n = 16384 and `q = 462 (this 33% smaller than the value

that satisfies our correctness bound due to experimental results that suggests the noise

grows slower than expected [131]) for 80 bits of security [131] and to allow evaluation

of L = 40 levels with N = 100 distinct keys yields a ciphertext size of approximately

754 GB per bit of plaintext. Suppose one were to use the scheme to encrypt an 80-bit

symmetric key, we would obtain a 59 TB ciphertext, which is severely impractical.

In the next section, parameters are discussed for this scheme.

6.5 Parameters for our Scheme

Before discussing how parameters are chosen for our scheme, more background is needed

on preimage sampling.
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6.5.1 Background on Preimage Sampling

Let A ∈ Zn×mq be a matrix. We define the lattice Λ⊥(A) = {~x ∈ Zm : A · ~x = ~0

mod q} as the space of vectors orthogonal to the rows of A modulo q. There exist

efficient algorithms to generate a statistically uniform matrix A ∈ Zn×mq together with

a short basis S ∈ Zm×m for Λ⊥(A) [13, 17]. Such an algorithm will be simply called

TrapGen here; that is, we will write (A,S) ← TrapGen(n,m, q). We denote by S̃ the

Gram-Schmidt orthonormalization of a basis S. Let L = ‖S̃‖ be the norm of S. There

are instances of TrapGen that achieve L = m1+ε for any ε > 0 [97], although this has been

improved upon in other works [142]. Hence, our setting of L later will be a conservative

choice.

Let d and t be positive integers with d ≤ t. Let B ∈ Rd×t be a basis for a d-

dimensional lattice Λ(B) ⊂ Rt. Then the discrete Gaussian distribution on Λ(B) with

center ~c ∈ Rt and standard deviation σ ∈ R is denoted by DΛ(B),s,~c. When ~c is under-

stood to be zero, the center parameter is omitted.

Gentry, Peikert and Vaikuntanthan [97] describe an algorithm to sample from a

discrete Gaussian distribution on an arbitrary lattice. They describe an efficient proba-

bilistic algorithm SampleD(B, σ,~c) that samples from a distribution that is statistically

close to DΛ(B),σ,~c, provided σ ≥ ‖B̃‖ · ω(
√

log d).

Consider the function fA : Zmq → Znq defined by f(~x) = A ·~x ∈ Znq . Given any vector

~u ∈ Znq , a preimage of ~u under fA is any ~x ∈ Zmq with fA(~x) = ~u.

It turns out SampleD can be used to efficiently to find short preimages ~x ∈ Zmq such

that A · ~x = ~u ∈ Znq for an arbitrary vector ~u ∈ Znq . Consider the following algorithm

SamplePre from [97]. Note that s is a parameter for which possible settings are given in

the next section.

• SamplePre(S,A, ~u): Find an arbitrary solution ~t ∈ Zmq (via linear algebra) such

that A · ~t = ~u mod q. Sample a vector ~e
$←− DΛ⊥(A),s,−~t by running ~e ←

SampleD(S, s,−~t), and output the vector ~x← ~e +~t.
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We remind the reader that there are improved variants of SamplePre in the literature

[142].

6.5.2 Preimage Distribution

We need s ≥ L·ω(
√

logm) to satisfy Theorem 5.9 of [97]. Let Bpreimage ≥
√
n·s. Then the

probability of the magnitude of any coefficient of a preimage vector exceeding Bpreimage

is exponentially small in n via a standard tail inequality for a normal distribution §. One

possible setting is s = L · logm, and Bpreimage =
√
n · s.

6.5.3 Noise Distribution

To satisfy Theorem 6.2.1, we need the noise distribution χ to be Bχ-bounded for some

Bχ (to satisfy Theorem 6.2.1, we require q/Bχ to be at most subexponential). Setting

χ ← DZ,r with r = logm and Bχ ≥
√
n · r ensures that χ is Bχ-bounded, since by the

aforementioned tail inequality, we have that Pr[x
$←− DZ,r, |x| > Bχ] is exponential in n.

6.5.4 Parameter B (B-strong-boundedness)

“Fresh” ciphertexts in our scheme are B-strongly-bounded. The parameter B is derived

from the product of Bpreimage and Bχ, since when the ciphertext matrix is multiplied by

a secret key vector, the resulting error vector is formed from the inner product of the

noise vector in the ciphertext (drawn from χ) and the secret key (a sampled preimage).

Concretely, with the suggested parameter setting, we have B = L · n · log2m. It is

necessary that q/B1 is at most subexponential in N . However, our analysis simplifies

this by taking q/B to be subexponential; however, since Bpreimage is polynomial in N , it

also holds that q/Bχ is subexponential.

§A normal variable with standard deviation σ is within t · σ standard deviations of its mean, except

with probability at most 1
t
· 1

et
2/2

[97].
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6.5.5 Sample Parameters and Ciphertext Size

Gentry, Sahai and Waters simplify their analysis by taking n to be a fixed parameter.

This is a simplification because q/B must be subexponential in n, and q depends on L;

therefore in actuality n depends on L.

Let L be the desired number of levels and let D be the desired maximum degree of

composition. According to Lemma 6.3.1, correctness requires that

q > 8 · w ·B(DN + 1)L. (6.5.1)

In Section 6.5.1, it was mentioned that L ≈ m. Putting this together with the

derivation of B above in Section 6.5.4 gives B = mn · log2m, where m ≥ 2n lg q from

Theorem 6.4.1. Choosing B in this way means that it is not too large and allows us to

derive lg q from the inequality 6.5.1 above as follows: lg q = O(L(lg D + lg n)).

Consider the following concrete parameters. Suppose we require a circuit depth

of L = 40 and a degree of composition up to D = 100. We can satisfy the correctness

constraint given by 6.5.1 by setting lg q = dc·L(lg D +lgL) = 4·40(lg 100+lg 40)e = 1915

(the constant c = 4 was chosen to meet the condition) and choosing the dimension to

be n = 2000. However the size of freshly encrypted ciphertexts in our leveled IBFHE

scheme with these parameters is greater than one exabyte (i.e. > 230 gigabytes) per bit

of plaintext, which is extremely impractical. This illustrates the impracticality of our

scheme, but it also highlights the impracticality of the GSW leveled IBFHE and ABFHE

schemes, which have only marginally smaller ciphertexts (we simply have D = 1 instead).

6.5.6 Basing Security on NTRU and Optimizations

No space savings are apparent if our multi-identity scheme is adapted to the RLWE

setting. A recent paper by Ducas, Lyubashevsky and Prest [77] show that the GPV

sampling algorithm can be instantiated with a particular distribution of lattices, known

as NTRU lattices after the NTRU cryptosystem [117]; these lattices give a nearly optimal

length for the lattice trapdoor. This has the effect of reducing a primary parameter,

150



namely m, in GPV , and by extension, in our multi-identity leveled IBFHE. We defer

the details to their paper, but it is sufficient to note here that GPV ciphertexts when

adapted to RLWE are reduced to two elements in a polynomial ring Rq = ZZq[x] f(x).

So this means that the ciphertext size, if we assume the hardness of solving lattice

problems over NTRU lattices, is roughly the same as our multikey FHE,

Recall our analysis of parameter settings for our multikey FHE from Section 6.4.4.

For an appropriate choice of parameters to evaluate circuits with L = 40 levels and up

to D = 100 distinct keys, and with 80-bits of security, each ciphertext consumed 754

GB; encrypting an 80-bit symmetric key to use hybrid homomorphic encryption then

requires 59 TB per ciphertext. There is an optimization we can apply that reduces the

ciphertext size to under a terrabyte at the expense of an increased size in the evaluated

ciphertexts. The main idea is to reuse the matrix X over multiple plaintext bits by

associating a user with κ identities.

6.6 Size of Evaluated Ciphertexts

As mentioned in the previous section, n is not a fixed parameter that depends solely

on the security level λ. Instead n grows with both L and D because q/B must be

subexponential in n to guarantee security. There is an optimization that applies to both

our construction and the GSW constructions in terms of the size of evaluated ciphertexts.

Decryption only requires a single row of a ciphertext matrix (see Section 6.3.2.3), so

an evaluated ciphertext can have size d · N where d is the degree of composition of

the evaluation. Let this vector be denoted by ~̂c ∈ {0, 1}d ·N . Applying BitDecomp−1,

the vector ~c ← BitDecomp−1(~̂c) ∈ Zm′q is obtained. As explained in [98], if we include

additional information in the public parameters, the technique of modulus reduction [49]

can be employed to each coefficient in ~c so that the size of each coefficient can be made

independent of D and L; their size must still depend on d to ensure correctness, but

this is allowed for by the compactness condition. However, while every coefficient can be

151



reduced, the dimension cannot be reduced. This is because the technique of dimension

reduction [49] appears to be only compatible with the public key setting since it relies

on publishing encryptions of the secret key. We defer the details to [49]. So the length

of the ciphertext vector is the length of ~c, namely m′, which in turn depends on both L

and D. Therefore, technically speaking, our multi-identity IBFHE in addition to both

the IBFHE and ABFHE constructions of Gentry, Sahai and Waters are not leveled in

the strict sense.

6.7 Formal Statement and Proof of Theorem 6.4.1

Corollary 6.7.1 (Corollary 5.4 [97]). Let n be a positive integer, and let q be a prime.

Let m ≥ 2n lg q. Then for all but a 2q−n fraction of all A ∈ Zn×mq and for any s ≥

ω(
√

logm), the distribution of the syndrome ~u = A~e mod q is statistically close to

uniform over Znq , where ~e ∼ DZm,s.

Theorem 6.4.1. Let n,m, q be chosen to meet Corollary 6.7.1. Let χ be a Bχ-bounded

distribution where Bχ satisfies Theorem 6.2.1. Let TrapGen be an algorithm that gener-

ates a statistically uniform matrix A ∈ Zn×mq together with a basis S ∈ Zm×m such that

‖S̃‖ ≤ L except with negligible probability. Let s ≥ L · ω(
√

logm). Let the scheme GPV

be instantiated with TrapGen and the SamplePre algorithm (with parameter s) described

in Section 6.5.1.

Then the masking system MSGPV is selectively secure in the random oracle model (i.e.

MSGPV meets the security condition of Definition 6.3.1) under the hardness of LWEn,q,χ.

Proof. We prove the theorem by means of a hybrid argument.

Game 0: This is the standard selective security game described in Definition 6.3.1.

Game 1: The following changes are made in this game. Let id∗ ∈ I be the adversary’s

target identity.

1. The matrix A
$←− Zn×mq is generated as uniformly random.
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2. The vector ~zid∗
$←− Znq is generated as uniformly random.

3. The random oracle H is simulated as follows: if the adversary A queries H on

identity id ∈ I, run:

(a) If id = id∗, then return ~zid∗ .

(b) Else if (id, ~sid, ~zid) ∈ store, return ~zid.

(c) Else sample ~tid
$←− DZm′−1,s, compute ~zid ← A· ~tid mod q, set ~sid ← (1,− ~tid) ∈

Zm′q , add (id, ~sid, ~zid) to store and return ~zid.

(d) Secret key queries are answered as follows. Suppose A queries a secret key

for identity id 6= id∗. We assume w.l.o.g. that A has first queried H on id. In

response to the query, ~sid is returned where (id, ~sid, ~zid) ∈ store.

We claim that A’s view in Game 0 is statistically close to A′s view in Game 1. The

first two changes above follow immediately from the definition of GPV (in particular,

the trapdoor basis generation algorithm employed guarantees that a near uniform A

can be generated). In regard to the simulation of H, Corollary 6.7.1 implies that the

vector H(id) when id 6= id∗ is statistically close to uniform. Finally, with regard to the

distribution of secret keys, Lemma 5.2 from [97] states that a preimage ~tid sampled with

SamplePre (with parameter s) in GPV.KeyGen is identically distributed to ~tid ∼ DZm′−1,s

conditioned on Aid · ~tid = ~zid mod q. It follows that the secret keys ~sid in Game 1 have

the same distribution as Game 0.

For i ∈ [`q]:

Game i + 1: This game is the same as the previous game except that Step 1a of

MSGPV.GenUnivMask for iteration i (only) is replaced with

~xi ← BitDecomp(~t).

where ~t
$←− Zm′q .

Given an LWE instance ~x∗ ∈ Zm′q , one can easily generate ~xi according to Game i

or Game i+ 1. Suppose a distinguisher D has a non-negligible advantage distinguishing
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between Game i and Game i + 1. We can use D to construct an algorithm B that

can solve an LWE instance. Given an appropriate number of samples from either the

distribution D0 := {{(~uj , 〈~uj ,~s〉+ ej) : ~uj
$←− Znq , e)j

$←− χ} : ~s
$←− Znq } or the distribution

D1 := {{(~uj , ~vj) : ~uj , ~vj
$←− Znq }}, the ~uj are used to construct A ∈ Zn×mq and ~zid∗ ∈ Znq .

The algorithm B simulates the random oracle H as explained above, and answers secret

key queries in the manner described above. Note that the distribution of A and ~zid∗

remain unchanged.

The algorithm B runs the same variant of MSGPV.GenUnivMask as the previous game.

The only difference is that on the i-th iteration, it replaces Step 1a with

~xi ← BitDecomp( ~x∗ + (µ · 2i, 0, . . . , 0))

where ~x∗ ∈ Zm′q is an LWE challenge vector that is either ~s · ~zid∗ ‖ A + ~e ∈ Zm′q or a

uniformly random ~t∗ ∈ Zm′q . In the former case, the view is statistically close to Game i

whereas the view in the latter case is statistically close to Game i+ 1. It follows that B

can output D’s guess to solve an LWE instance. The games are thus indistinguishable

by the hypothesized hardness of LWE.

As a shorthand for Game (`q + 1) + (i − `q − 1) · (η + 1) + j, we use the notation

Game (i, j) for `q < i ≤ N and j ∈ [η + 1].

For `q < i ≤ N :

For j ∈ [η]:

• Game (i, j): This game is the same as the previous game except that we change the

way that the j-th row of B(i) is generated in MSGPV.GenUnivMask. More precisely,

Step 2(b)i of algorithm MSGPV.GenUnivMask is replaced with

~
b

(i)
j ← BitDecomp(~t)

with ~t
$←− Zm′q . for the specific case of the i-th iteration of the outer loop and the

j-th iteration of the inner loop.
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An analogous argument to the argument made above concerning the indistinguisha-

bility of Game i and i+1 for i ∈ [`q] can be made here to show that a non-negligible

advantage distinguishing between the games implies a non-negligible advantage

against LWE.

Remark At this stage, note that B(i) from MSGPV.GenUnivMask is uniform over Zη×m
′

q ;

in particular it does not rely on any ~r associated with a ~yi nor does it rely on µ.

Game (i, η + 1): The modification in this game is as follows. Step 2d of MSGPV.GenUnivMask

for the i-th iteration is replaced with

~yi ← Flatten((BitDecomp((0,~t)).

with ~t
$←− Zm′q

Once again an analogous LWE-based argument to that above shows that one can embed

an LWE challenge when generating ~yi such that indistinguishability between the games

implies a non-negligible advantage against LWE.

We conclude the proof by observing that in Game (N, η+ 1), the plaintext bit µ has

been eliminated entirely from the generation of the universal mask U . It follows that

an adversary has a zero advantage guessing the challenger’s bit b, since no information

about b is incorporated in the universal mask U given to the adversary.

6.8 Application Scenario

We once again return to the medical records scenario from the introduction (Section 1.2.0.1)

to illustrate the contributions of this chapter. Suppose the scheme used in this scenario

is the leveled IBFHE from this chapter. Each of the three senders can encrypt their data

under the appropriate identity string, either “CARDIOLOGY” or “MATERNITY”. As-

suming the computation to be carried out by the evaluator is known in advance to be
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representable by a circuit of depth at most L, then the scheme can be set up to ac-

commodate L levels i.e. the public parameters can be generated accordingly. This is

the major difference from our discussion of the same scenario in the previous chapter,

where no such limit L was imposed. Instead, in the previous chapter, there was a limit

imposed on the number of independent senders. Here we have no limit on the number

of independent senders but we merely have a limit on the degree of composition, D.

Suppose we have D = 100 such that data sets with up to 100 different attributes can be

used in an evaluation. There can be an arbitrary number of senders provided the degree

of composition d is at most D.

Recall that the receiver in the scenario has an access policy f with f(“CARDILOGY”) =

1 and f(“MATERNITY”) = 1. We can model disjunctive policies such as this in an

identity-based context. For example: to issue the receiver with a secret key for f , the

TA can issue a secret key skCARDIOLOGY for identity “CARDIOLOGY” and a secret key

skMATERNITY for identity “MATERNITY”; both secret keys constitute the secret key

for f . To perform decryption, the receiver first tries to decrypt with skCARDIOLOGY and

then if that fails, tries to decrypt with skMATERNITY. Provided the depth of the circuit

to be evaluated is at most L, our leveled IBFHE fully meets the needs of the scenario¶.

Our leveled IBFHE can also be used to instantiate the construction from the previous

chapter. As a result, we can eliminate the limit L on the depth of the circuit to be

evaluated. This is advantageous if we don’t know the depth of the circuit prior to

generating the public parameters. The trade-off is that we now have a limit on the

number of independent senders, say N = 100, keeping with our scenario outline from

the previous chapter. As long as the number of independent senders is less than that

limit, our construction from the previous chapter instantiated with our leveled IBFHE

from this chapter fully meets the needs of the scenario.

¶Of course a more complex access policy f cannot be handled unless we have a leveled ABFHE with

support for more complex access policies. Disjunctive policies is all our leveled IBFHE can natively

handle.
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6.9 Summary

In this chapter, we presented a multi-identity leveled IBFHE scheme based on the LWE

problem. Our construction is built on the single-identity leveled IBFHE of Gentry,

Sahai and Waters [98]. We described a compiler to transform an LWE-based IBE into

a multi-identity leveled IBFHE provided the IBE satisfies certain properties. One of

the requirements is that the IBE admits an abstraction we call a masking system. We

developed a concrete masking system for the IBE of Gentry, Peikert and Vaikuntanathan

(GPV) [97], and showed it to be selectively secure in the random oracle model under

LWE. As a result of our compiler, we can compile GPV into a multi-identity leveled

IBFHE that is selectively secure in the random oracle model under LWE.

By employing similar ideas to our multi-identity construction, we observe that if

one replaces IBE with a public-key scheme, one obtains a multi-key FHE scheme from

LWE. This is the first multikey FHE from a well-established problem such as LWE‖

Furthermore, the decryption circuit for the multikey FHE is in NC1 i.e. it has depth

O(logN · λ) where N is the number of independent keys. This is in contrast to the

other multikey FHE from the literature [135] whose decryption circuit is in NC2. This

has very positive implications for instantiating our construction from Chapter 5, since

by using our multikey FHE, one needs an ABHE scheme supporting circuits in NC1 as

opposed to NC2.

‖When we say multikey FHE, we mean one that supports a non-constant number of keys. López-

Alt, Tromer and Vaikuntanathan [135] presented a scheme from LWE for a constant number of keys.

Their construction for a non-constant number of keys relies on a non-standard assumption, namely the

Decisional Small Polynomial Ratio problem.
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Chapter 7

Bootstrapping and Fully

Homomorphic Constructions

So far in this thesis, we have been building towards “pure” FHE in the attribute-based

setting, but none of our constructions thus far facilitates arbitrary computation on en-

crypted data. The construction presented in Chapter 5 can evaluate circuits of bounded

arity. The construction in Chapter 6 can evaluate circuits of bounded depth (i.e. leveled

FHE). The question as to whether attribute-based (or indeed identity-based) “pure”

FHE is possible remains open.

In the public-key setting, a leveled FHE scheme can be transformed into a “pure”

FHE scheme (i.e. a scheme supporting evaluation of circuits of unlimited depth) via

Gentry’s bootstrapping theorem [93]. However we could not apply the process of boot-

strapping to our multi-identity leveled IBFHE in the previous chapter, and thus could

not achieve “pure” IBFHE.

In brief, the process of bootstrapping entails using the scheme to homomorphically

evaluate its own decryption circuit. More precisely, ciphertexts in existing FHE schemes

contain a level of “noise”. As long as this “noise” remains below a certain threshold,

decryption can be performed correctly. The goal of bootstrapping is to return the noise

158



to a reduced level, so homomorphic operations can continue to be performed. This is

achieved by publishing encryptions of the secret key bits, and homomorphically evaluat-

ing the scheme’s decryption circuit on a “noisy” ciphertext to produce a ciphertext with

less noise.

At his talk at CHES/Crypto 2010, Naccache [146] mentioned “identity-based fully

homomorphic encryption” as an open problem. As we saw in the previous chapter,

Gentry, Sahai and Waters presented the first leveled identity-based fully homomorphic

encryption (IBFHE) scheme [98]. Furthermore, we extended this result in the previous

chapter to the multi-identity setting i.e. our scheme supports evaluation on ciphertexts

with different identities.

Achieving fully homomorphic encryption (FHE) in the identity-based setting turned

out to be quite a tricky problem, for a variety of reasons, as discussed in Chapter 2.

To the best of our knowledge, there are no known “pure” IBFHE schemes in the

literature, since Gentry’s bootstrapping theorem from [93] is the only known way of

converting a leveled FHE scheme to a “pure” FHE scheme.

In this chapter, we construct the first “pure” IBFHE scheme, which definitively

resolves the question raised by Naccache [146] as to the feasability of “identity-based

fully homomorphic encryption”. Furthermore, we construct a “pure” multi-attribute

ABFHE for all polynomial time access policies.

7.0.1 Contributions

7.0.1.1 Construction of “Pure” IBFHE

We construct the first “pure” IBFHE scheme using the technique of “punctured pro-

gramming” [165], a powerful tool combining an indistinguishability obfuscator [87] with

a puncturable pesudorandom function (PRF) [43,46,126],
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7.0.1.2 “Pure” Multi-Attribute ABFHE for general access policies

We present the first ABFHE that supports evaluation on ciphertexts with different

attributes. This scheme is also the first “pure” ABFHE.

7.0.1.3 A Compiler from leveled IBFHE to “Pure” IBFHE

We exploit indistinguishability obfuscation in constructing a compiler from a leveled

IBFHE satisfying certain properties to a bootstrappable, and hence “pure”, IBFHE.

Our main idea is to include in the public parameters an obfuscation of a program (with

the master secret key embedded) so that the evaluator can non-interactively derive an

“evaluation key” for any identity. Although our compiler falls short of working with

arbitrary leveled IBFHE schemes, we establish sufficient conditions for a leveled IBFHE

to satisfy in order for it to be bootstrappable. This leads us to an interesting character-

ization of compatible schemes, which also encompasses our positive result above.

7.1 Building Blocks

7.1.1 Indistinguishability Obfuscation

Garg et al. [87] recently introduced a candidate construction of an indistinguishability

obfuscator based on multi-linear maps. Many of our constructions in this chapter depend

on the notion of indistinguishability obfuscation. Here we give a brief overview of its

syntax and security definition.

Definition 7.1.1 (Indistinguishability Obfuscation (Based on Definition 7 from [104])).

A uniform PPT machine iO is called an indistinguishability obfuscator for every circuit

class {Cλ} if the following two conditions are met:

• Correctness: For every λ ∈ N, for every C ∈ Cλ, for every x in the domain of

C, we have that

PrC ′(x) = C(x) : C ′ ← iO(C) = 1.

160



• Indistinguishability: For every λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ, if

C0(x) = C1(x) for all inputs x, then for all PPT adversaries A, we have:

|PrA(iO(C0)) = 1| − |PrA(iO(C1)) = 1| ≤ negl(λ).

7.1.2 Puncturable Pseudorandom Functions

A puncturable pseudorandom function (PRF) is a constrained PRF (Key,Eval) with an

additional PPT algorithm Puncture. Let n(·) and m(·) be polynomials. Our definition

here is based on [104] (Definition 3.2). A PRF key K is generated with the PPT

algorithm Key which takes as input a security parameter λ. The Eval algorithm is

deterministic, and on input a key K and an input string x ∈ {0, 1}n(λ), outputs a string

y ∈ {0, 1}m(λ).

A puncturable PRF allows one to obtain a “punctured” key K ′ ← Puncture(K,S)

with respect to a subset of input strings S ⊂ {0, 1}n(λ) with |S| = poly(λ). It is required

that Eval(K,x) = Eval(K ′, x) ∀x ∈ {0, 1}n(λ) \ S, and for any poly-bounded adversary

(A1,A2) with S ← A1(1λ) ⊂ {0, 1}n(λ) and |S| = poly(λ), any key K ← Key(1λ), any

K ′ ← Puncture(K,S), and any x ∈ S, it holds that

PrA2(K ′, x,Eval(K,x)) = 1− PrA2(K ′, x, u) = 1 ≤ negl(λ)

where u
$←− {0, 1}m(λ).

7.2 Construction of “Pure” IBFHE

We now construct a “pure” IBFHE from indistinguishability obfuscation. The main idea

is to use the technique of punctured programming, which involves using indistinguisha-

bility obfuscation together with a puncturable PRF. In our case, we use the puncturable

PRF for the derivation of a user’s public key from her identity. Moreover, a unique key

pair for a public-key encryption (PKE) scheme can be associated with every identity.

If the PKE scheme is also “pure” fully-homomorphic, then we obtain a “pure” IBFHE
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scheme. Let EFHE := (Gen,Encrypt,Decrypt,Eval) be a public-key FHE. We denote by

PKFHE and SKFHE its public-key and private-key space respectively. Consider the fol-

lowing function FMapPK : I → PKFHE that maps an identity id ∈ I to a public key for

EFHE:

Program FMapPK(id) :

1. Compute rid ← PRF.Eval(K, id).

2. Compute (pkid, skid)← EFHE.Gen(1λ; rid).

3. Output pkid

A formal description of a scheme Ê∗ that uses an obfuscation of FMapPK is as follows.

• Ê∗.Setup(1λ): Compute K ← PRF.Key(1λ), compute obfuscation H ← iO(FMapPK)

of FMapPK with K embedded. Output (H,K) (note that H constitutes the public

parameters and K constitutes the master secret key).

• Ê∗.KeyGen(K, id): Compute rid ← PRF.Eval(K, id), compute (pkid, skid)← EFHE.Gen(1λ; rid),

and output skid.

• Ê∗.Encrypt(H, id,m): Compute pkid ← H(id) and output EFHE.Encrypt(pkid,m).

• Ê∗.Decrypt(skid, c): Output EFHE.Decrypt(skid, c).

• Ê∗.Eval(H,C, c1, . . . , c`): Compute pkid ← H(id) and output EFHE.Eval(pkid, C, c1, . . . , c`).

Lemma 7.2.1. Assuming indistinguishability obfuscation, a secure puncturable PRF

and an IND-CPA-secure public-key FHE scheme EFHE, the scheme Ê∗ is IND-sID-CPA

secure.

Proof. We prove the lemma via a hybrid argument.

Game 0: This is the real system.

162



Game 1: This is the same as Game 0 except for the following changes. Suppose the

adversary chooses id∗ as the identity to attack. We compute K ′ ← PRF.Puncture(K, id∗)

and answer secret key requests using K ′ instead of K.

The adversary cannot detect any difference between the games since for all id 6= id∗,

it holds that PRF.Eval(K, id) = PRF.Eval(k′, id).

Game 2 This is the same as Game 1 except that we make the following changes to

FMapPK:

• Add before step 1: if id = id∗, then output pkid∗ (defined below). Else run steps 1

- 3.

• Replace K with K ′.

where (pkid∗ , skid)← EFHE.Gen(1λ; rid∗) and rid∗ ← PRF.Eval(K, id∗).

Observe that the modified function is identical to FMapPK, and due to the security of

indistinguishability obfuscation, their respective obfuscations are thus computationally

indistinguishable.

Game 3: This is the same as Game 2 except that we change how pkid∗ is computed. We

do this indirectly by changing how rid∗ is computed instead. More precisely, we choose

a uniformly random string rid∗
$←− {0, 1}m where m is the length of the pseudorandom

outputs of PRF.Eval i.e. m = |PRF.Eval(K, id∗)|.

By the security of the puncturable PRF, we have that

{(K ′, id∗,PRF.Eval(K, id∗)} ≈
C
{(K ′, id∗, r) : r

$←− {0, 1}m)}.

It follows that Game 2 and Game 3 are computationally indistinguishable.

Game 4: This is the same as Game 3 except that we replace the challenge ciphertext

with an encryption of a random message. The adversary has a zero advantage in this

game.

If a PPT adversary A can distinguish between Game 3 and Game 4, then there exists

a PPT adversary B that can use A to attack the IND-sID-CPA security of EFHE. When B

163



receives the challenger’s public key pk, it sets pkid∗ ← pk where id∗ is the target identity

chosen by A. Note that pkid∗ has the same distribution as that from Game 3. Suppose

m0 and m1 are the messages chosen by A. B samples a random bit b, and also samples a

random message m′
$←−M, and sends (mb,m

′) to the IND-CPA challenger, who responds

with a challenge ciphertext c∗. Then B relays c∗ to A as the challenge ciphertext. Let b′

denote the random bit chosen by the challenger. If b′ = 0, then the game is distributed

identically to Game 3; otherwise if b′ = 1 it is distributed identically to Game 4. It

follows that any A with a non-negligible advantage distinguishing between the games

contradicts the hypothesized IND-CPA security of EFHE.

Theorem 7.2.1. Assuming indistinguishability obfuscation, one-way functions and fully

homomorphic encryption, there exists an IND-sID-CPA-secure “pure” IBFHE scheme i.e.

an identity-based scheme that can homomorphically evaluate all circuits.

Proof. The construction Ê∗ is fully homomorphic if the underlying PKE scheme EFHE

is fully homomorphic. Lemma 7.2.1 shows that Ê∗ is IND-sID-CPA secure assuming

indistinguishability obfuscation, one-way functions and the IND-CPA security of EFHE.

The result follows.

Note that because our IBFHE relies on (public-key) “pure” FHE and because all

constructions of “pure” FHE that we know of require a circular security assumption,

it naturally follows that our IBFHE also requires a circular security assumption. Fur-

thermore, our IBFHE is only shown to be selectively secure. While there is a generic

transformation from a selectively-secure IBE to a fully-secure IBE [34], this transforma-

tion incurs a degradation in security by a factor of 2s where s = |I| is the size of the

identity space. Obtaining a fully secure “pure” IBFHE “directly” remains an open prob-

lem. These remarks also apply to our attribute-based constructions, which are presented

next.
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7.3 “Pure” Multi-Attribute ABFHE for General Access

Policies

7.3.1 Single-Attribute Construction

The scheme Ê∗ can be extended to an Attribute Based Encryption (ABE) scheme. Recall

that in a (key-policy) ABE scheme, an encryptor associates an attribute a ∈ A with her

message, whereas a decryptor can only successfully decrypt a ciphertext with attribute

a ∈ A if he holds a secret key for a policy (i.e. a predicate) f : A→ {0, 1} with f(a) = 1.

We denote by F the class of supported policies. Therefore, in an ABE scheme, the trusted

authority issues secret keys for policies instead of identities as in IBE. The fundamental

difference is that there is no longer a one-to-one correspondence between attributes and

policies (which is the case in IBE).

Beyond notationally replacing the set of identities I with a set of attributes A in

Ê∗, nothing changes for setup, encryption and evaluation. The primary change takes

place with respect to key generation. In KeyGen, given a punctured PRF key K ′ and a

policy f ∈ F, we return as the secret key for f an obfuscation df ← iO(FMapSKf ), where

FMapSKf is defined as follows with respect to f :

Program FMapSKf (a) :

1. If f(a) = 0, Output ⊥.

2. Compute ra ← PRF.Eval(K, a).

3. Compute (pka, ska)← EFHE.Gen(1λ; ra).

4. Output ska.

Decryption is straightforward: given a secret key for f , namely the obfuscation df , a

decryptor simply computes ska ← df (a) (she can store ska for future use to avoid re-

evaluating df ) where a is the attribute associated with ciphertext c, and then computes
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the plaintext m ← EFHE.Decrypt(ska, c). Hence, we obtain an ABFHE for general-

purpose policies f .

7.3.2 Multi-Attribute Construction

One of the limitations of our ABFHE construction is that homomorphic evaluation is

restricted to the single-attribute setting. In other words, homomorphic evaluation is

only supported for ciphertexts with the same attribute. In fact, this is the case for the

only known leveled ABFHE in the literature [98].

Let D be an upper bound on the number of distinct attributes supported when

homomorphically evaluating a circuit. In multi-attribute ABFHE, the main syntactic

change is that the size of an evaluated ciphertext is allowed to depend on d ≤ D, which

is the number of distinct attributes used in an evaluation. Also, D is a parameter that

is specified in advance of generating the public parameters.

To be more precise, consider ciphertexts c1, . . . , c` passed to the Eval algorithm. Each

of the ` ciphertexts may have a different attribute. Thus there is at most d ≤ ` distinct

attributes in this set. As long as d ≤ D, the scheme can handle the evaluation of a

circuit. Let c′ ← Eval(PP, C, c1, . . . , c`) be an evaluated ciphertext, where PP is the

public parameters and C is a circuit. It is required that |c′| = poly(λ, d ).

In the previous chapter, we developed a multi-identity leveled IBFHE. We noted that

we could not extend our techniques therein to achieve leveled IBFHE for more complex

policies than IBE; multi-attribute ABFHE remained elusive. Now recall our multi-

attribute ABHE construction from Chapter 5. This construction employed multikey

FHE in an integral way to achieve FHE for bounded-arity circuits, assuming the existence

of an ABHE for polylog circuits. It turns out the essence of this construction is of

significant import here also. The major limitation of our construction from Chapter 5

is that the arity of the circuit is bounded. More concretely, this means that the number

of independent senders who contribute data is a priori bounded, which is not ideal in

many scenarios. Instead, we would like to evaluate circuits of unbounded arity and
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instead merely place a limit on the degree of composition. Furthermore, to fulfill the

requirements of ABHE, we would like the size of evaluated ciphertexts to depend only on

the degree of composition. We now show how to use multikey FHE and the techniques

discussed so far in the chapter to accomplish multi-attribute “pure” ABFHE for general-

purpose access policies. This is the ultimate contribution of this thesis; it shows that we

can maximize all facets of ABHE: (1). supported circuits; (2). supported access policies;

and (3). composition.

Multi-Attribute ABFHE can be viewed as an attribute-based analog to multi-key

FHE from [135]. In multi-key FHE, the size of evaluated ciphertexts depends on an a

priori fixed parameter M , which represents the number of independent keys tolerated by

the scheme. Hence data encrypted under at most M distinct public keys pk1, . . . , pkM

can be used together in an evaluation.

We exploit multi-key FHE to construct a multi-attribute ABFHE. Our scheme is

very similar to our (single-attribute) ABFHE scheme described above in Section 7.3.

The main change is that EFHE is replaced with a multi-key FHE scheme EMKFHE (such as

the NTRU-based scheme from [135]). The latter is instantiated with parameter M sup-

plied when generating the public parameters. Suppose a collection of input ciphertexts

c1, . . . , c` are associated with a set of k ≤ M distinct attributes a1, . . . , ak ∈ A. Hence,

an evaluated ciphertext c′ is associated with a set A = {a1, . . . , ak}.

Decryption depends on the intended semantics. One may wish that the decryption

process is collaborative i.e. there may not be a single f that satisfies all k attributes,

but users may share secret keys for a set of policies {f} that “covers all” k attributes.

Alternatively, and this is the approach taken in [62], it may be desired that a user can

only decrypt c′ if she has a secret key for a policy f that satisfies all k attributes. We

take the former approach here because as discussed in Chapter 3 (Section 3.1.1.2), this

model gives more flexibility, thus allowing more applications.

In our scheme, secret keys are the same as those in the single-attribute scheme from

the previous section; that is, a secret key for f is on obfuscation df ← iO(FMapSKf )
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of the program FMapSKf . Let c′ be a ciphertext associated with k distinct attributes

a1, . . . , ak. To decrypt c′ with a secret key df for policy f , a decryptor does the fol-

lowing: if f(ai) = 1 for every i ∈ [k], compute skai ← df (ai), and output m ←

EMKFHE.Decrypt({ska1 , . . . , skak}, c′); otherwise output ⊥. Suppose a user has secret

keys for t different policies f1, . . . , ft. As long as every attribute ai satisfies at least

one of these policies, the user can obtain the corresponding skai and decrypt the EMKFHE

ciphertext c in the same manner as above.

7.3.2.1 sel-EVAL-SIM Security

To prove sel-EVAL-SIM security of our multi-attribute ABFHE above, we need to make

an additional assumption. We require the multikey FHE scheme EMKFHE to satisfy a

stronger notion than IND-CPA security that we call multikey privacy. Informally, this

means that an attacker cannot distinguish which of two known sets of public keys was

used to encrypt a given ciphertext provided both sets have the same cardinality and

both sets contain at least one public key whose corresponding secret key is unknown to

the attacker. The formal security game is captured in the following experiment.

Let O be an oracle that returns a key tuple (pk, sk, vk) ← Gen(1λ) for the multikey

FHE scheme EMKFHE when queried for an index i ∈ N. It returns the same response

when queried on the same index. Similarly, let O′ be an oracle that returns a key tuple

(pk, vk) where (pk, sk, vk)← Gen(1λ). Both oracles generate fresh keys for EMKFHE with

O providing both public and secret information associated with the key, and O′ providing

only public information. The adversary A = (A1,A2) is a pair of PPT algorithms.

Experiment MKPriv(A1,A2):

1. (state, C,m0,1, . . . ,m0,`,m1,1, . . . ,m1,`, v0,1, . . . , v0,`, v1,1, . . . , v1,`)← AO,O
′

1 (1λ).

2. Suppose A1 makes a total of Q = q + q′ queries. Assume w.l.o.g. that A1 queries

O on 1, . . . , q to yield (pki, ski, vki) for 1 ≤ i ≤ q, and it queries O′ on q+ 1, . . . , Q

to yield (pki, ski) for q + 1 ≤ i ≤ Q.
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3. Abort with a random bit unless the following conditions are met for i ∈ {0, 1}:

(a) vi,1, . . . , vi,` ∈ [Q].

(b) vi,j > q for some j (this implies that q′ ≥ 1 and at least one key to be used

in evaluation came from O′).

4. Generate a uniformly random bit b
$←− {0, 1}.

5. Compute ci,j ← Enc(pkvi,j ,mi,j) for i ∈ {0, 1} and j ∈ [`].

6. Compute

c∗ ← Eval(C, (cb,1, vkvb,1), . . . , (cb,`, vkvb,`)).

7. b′ ← A2(state, c∗, c0,1, . . . , c0,`, c1,1, . . . , c1,`).

8. Output 1 if b′ = b and output 0 otherwise.

A multikey FHE scheme is said to be multikey-private if for any pair of PPT algorithms

(A1,A2), it holds that

Pr[MKPriv(A1,A2)⇒ 1]− 1

2
< negl(λ).

Observe that this formulation of multikey FHE privacy requires Eval to be nondetermin-

istic. Otherwise, it is trivial for an adversary to guess the challenger’s random coin by

merely calling Eval with both sequences of ciphertexts.

Lemma 7.3.1. There exists a multikey FHE scheme from [135] that is multikey-private

under the Decisional Small Polynomial Ratio (DSPR) and Ring Learning With Errors

(R-LWE) assumptions.

Proof. Ciphertexts in this scheme are indistinguishable from uniform elements in a ring

provided a party does not have secret keys for all keys used.
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To help the reader follow the proof below, we first recall the definition of sel-EVAL-SIM

security from Chapter 3 (Section 3.3.2). The goal is that there exists a simulator S such

that no adversarial triple of PPT algorithms B = (B1,B2,B3) can distinguish between the

real distribution (which uses the real system) and ideal distribution (which uses S). To

recap: the algorithm B1 outputs a set of attributes A = {a1, . . . , ad } ⊆ A; the algorithm

B2 takes as input the public parameters PP and outputs a circuit C, a sequence of pairs

(a1, µ1), . . . , (a`, µ`) with ai ∈ A and µi ∈ M for i ∈ [`], and state st; the algorithm B3

takes as input state st, a challenge ciphertext c∗ and a sequence of ciphertexts c1, . . . , c`

- it outputs a guess bit b ∈ {0, 1}.

Theorem 7.3.1. Our multi-attribute ABFHE scheme, instantiated with a multikey FHE

that is multikey private, is sel-EVAL-SIM secure.

Proof. We show sel-EVAL-SIM security with respect to the following simulator S. The

simulator S, on input public parameters PP, circuit C and set of attributes A =

{a1, . . . , ad } performs the steps: generate d key triples for the multikey FHE: (pki, vki, ski)←

EMKFHE.Gen(1λ) for i ∈ [d ]; generate random bits bi
$←− {0, 1} for i ∈ [`]; choose

v1, . . . , v` ∈ [d ], encrypt ci ← EMKFHE.Encrypt(pkvi , bi) for i ∈ [`] and output c′ ←

EMKFHE.Eval(C, (c1, vkv1), . . . , (c`, vkv`)).

Suppose there is an adversary B = (B1,B2,B3) that attacks the sel-EVAL-SIM security

of our multi-attribute ABFHE. Then there is an adversary A = (A1,A2) that attacks

the multikey privacy of EMKFHE. The algorithm A1 runs as follows:

• Run B1 to get attributes A = {a1, . . . , ad }.

• Choose random k
$←− [d ].

• Query O for all i ∈ [d ] \ {k} to get (pki, vki, ski). Query O′ on k to get (pkk, vkk).

• Run B2 to get (C, (a1, µ1), . . . , (a`, µ`), st). B2’s secret key queries are handled as

follows:
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– If f is queried with f(ak) = 1, abort with a random bit.

– An obfuscation of a modified version of fMapSKf is returned. In the modified

version, for each i ∈ [d ] \ {k}. the secret key ski is hard-coded for input ai.

Due to the indistinguishability property, B2’s view is indistinguishable from

the original view.

• Let v0,i be the index such that ai = av0,i for i ∈ [`].

• Choose v1,1, . . . , v1,` ∈ [d ].

• Choose random b1, . . . , b`
$←− {0, 1}.

• Output (C, µ1, . . . , µ`, b1, . . . , b`, v0,1 . . . , v0,`, v1,1, . . . , v1,`, state := st).

The probability that A1 does not abort is at least 1/d . To see this, observe that there

must be at least one attribute that satisfies no queried policy. The probability that this

attribute is ak is 1/d .

The algorithm A2 receives as input state := st, a challenge ciphertext c∗ and two

sequences of ciphertexts c0,1, . . . , c0,` and c1,1, . . . , c1,`. The algorithm A2 runs as follows:

• It runs γ ← B3(st, c∗, c0,1, . . . , c0,`).

• It outputs B3’s guess γ ∈ {0, 1}.

Recall that the challenge c∗ is generated from (cb,1, vkvb,1) . . . , (cb,`, vkvb,`) for either b = 0

or b = 1. If b = 0, then c∗ is generated as in the real system. If b = 1, then c∗ generated

in an identical manner to the simulator S. Therefore, if B3 has a non-negligible advan-

tage against sel-EVAL-SIM security, then this translates into a non-negligible advantage

against multikey privacy.

7.3.2.2 Discussion

The implications of the “pure” multi-attribute ABFHE presented in this chapter are

significant since it maximizes all facets of ABHE, namely supported class of circuits,
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supported class of access policies and composition (multi-attribute). It maximizes the

supported class of access policies because it supports all polynomial time access policies.

The proof of semantic security follows directly from the proof of security of our “pure”

IBFHE - the only difference is that an FHE scheme is replaced with a multikey FHE,

and hence we rely on the IND-CPA security of the latter instead of the former. However,

we can only prove the scheme selectively secure. To achieve full security, we must employ

the reduction due to Boneh and Boyen [34] as described in Chapter 2, Section 2.2.3.2,

which converts a selectively secure scheme into one that is fully secure. However this

conversion looses an exponential factor in the tightness of the reduction, which basically

means that the public parameters must be set with security parameter O(2·λ) to achieve

security of 2λ against an attacker. Hence the public parameters are larger, making the

scheme less efficient. However, since our scheme serves mainly as a theoretical possibility

result, the applicability of the reduction of Boneh and Boyen means that we can argue

that there exists a fully secure “pure” multi-attribute ABFHE.

Similarly, after applying the Boneh and Boyen conversion, we yield a scheme that

is EVAL-SIM secure instead of sel-EVAL-SIM secure. The importance of the EVAL-SIM

security definition is that an adversary cannot link a collection of input ciphertexts to a

ciphertext resulting from an evaluation. The adversary may learn the circuit that was

used and the d attributes that were used in the evaluation, but no more than that∗.

∗In fact, if the underlying multikey FHE used to instantiate our construction satisfies circuit privacy

and multikey privacy (which is the case for the multikey FHE from [135]), then we can even achieve a

stronger security property than our definition of EVAL-SIM security, namely one where all the adversary

learns about an evaluated ciphertext is its degree of composition.
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7.4 Making Existing Leveled IBFHE Schemes Bootstrap-

pable

Indistinguishability obfuscation is computationally expensive and our constructions in

this chapter require the encryptor and evaluator to run an obfuscated program for en-

cryption and evaluation respectively. It is desirable to curtail this expense to the infre-

quent times when bootstrapping is in fact needed. In Appendix D, we present a compiler

for this case, and identify sufficient conditions for the compiler to be applicable.

7.5 Application Scenario

We revisit the medical records scenario from the introduction (Section 1.2.0.1) to il-

lustrate our multi-attribute ABFHE from this chapter. In the scenario, three senders

contribute encrypted data to an evaluator who performs computation on the encrypted

data. Two of the senders encrypt their data under the attribute “CARDIOLOGY” while

the other sender encrypts his data under the attribute “MATERNITY”. A receiver with

access policy f with f(“CARDIOLOGY”) = 1 and f(“MATERNITY”) = 1 can decrypt

the result of the computation C. A multi-attribute ABFHE fully accommodates this

scenario without limitations. More precisely, no limit is placed on the computation C,

which may be arbitrary. Furthermore, there is no limit on the number of independent

senders (or the arity of the circuit), as we have seen in the construction from Chapter 5.

Finally, the access policy f may be arbitrarily complex, as long as it runs in polynomial

time because our multi-attribute ABFHE supports all polynomial-time access policies.

Hence, our multi-attribute ABFHE is the ideal candidate for achieving the goals of the

scenario because it places no limitations on either the computation to be performed or

the complexity of the receiver’s access policy. The only necessary bound is on the degree

of composition. In this scenario, the degree of composition is 2 (the distinct attributes

are “CARDIOLOGY” and “MATERNITY”). The maximum degree of composition sup-
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ported may be set to (say) 100. This is the only limiting factor on the evaluation to be

performed with our multi-attribute ABFHE, but this is the case for all constructions in

this thesis since it is an inherent property of multi-attribute ABHE.

7.6 Summary

In this chapter, a construction of “pure” IBFHE was presented based on puncturable

pseudorandom functions (PRF) and indistinguishability obfuscation. We extended this

result to obtain a construction of “pure” ABFHE for all polynomial time access poli-

cies. Following on from this, and leveraging multikey FHE in a similar manner to

our construction from Chapter 5, we obtained a “pure” multi-attribute ABFHE for all

polynomial-time access policies. We showed this scheme to be both IND-sel-CPA and

sel-EVAL-SIM secure.

We then presented a compiler to transform a leveled IBFHE satisfying certain con-

ditions into a bootstrappable, and hence “pure”, IBFHE.
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Chapter 8

Conclusions and Future Work

In this thesis we considered homomorphic encryption in the attribute-based setting.

We defined the formal syntax of attribute-based homomorphic encryption (ABHE) in

Chapter 3. Our definition of this primitive is general enough to capture homomorphic

evaluation over ciphertexts with different attributes. Using the terminology put forward

in this thesis, the number of distinct attributes in a given evaluation is referred to as

its degree of composition. A compactness condition was defined for ABHE that requires

the size of a ciphertext resulting from an evaluation (called an evaluated ciphertext) to

depend polynomially on the security parameter and the degree of composition. Our

definition endows an ABHE scheme with two parameters D and K . The first gives the

maximum degree of composition supported by the scheme, while the latter gives the

maximum number of decryption keys that can be passed to the decryption algorithm.

The latter in turn determines the model of decryption. In Chapter 3, two such models

were defined: the first model captures collaborative decryption (this corresponds to the

case of 1 < K ≤ D) in which a collection of policies that between them “cover all”

the attributes associated with a ciphertext, are sufficient to decrypt the ciphertext; the

second model captures an “atomic” notion (this corresponds to the case K = 1) where

a decryptor needs a single policy satisfying every attribute associated with a ciphertext
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in order to decrypt that ciphertext.

Following on from this, we defined, in addition to the standard indistinguishability

security game, a simulation-based definition of security - abbreviated as EVAL-SIM.

This captures the desirable property that a number of senders should not be able to

tell whether their input ciphertexts were used in a particular evaluation to produce a

given evaluated ciphertext, provided they cannot decrypt the evaluated ciphertext. So

an evaluated ciphertext may therefore leak (to any party unauthorized to decrypt it)

its associated attributes along with the circuit that was evaluated, but nothing more.

This definition can be further strengthened by not leaking any more than the degree of

composition (let’s call it d ), thus hiding the circuit (i.e. computational circuit privacy)

and the d distinct attributes (i.e. attribute-privacy).

Equipped with these notions, this thesis then addressed the two primary forms of

homomorphic encryption, namely group homomorphic encryption (GHE) and fully ho-

momorphic encryption (FHE), in an attribute-based context. In Chapter 4, attribute-

based group homomorphic encryption (ABGHE) was formally defined. Schemes from

the literature that meet this definition were discussed; these schemes admit a multi-

plicative homomorphism. It was observed that there are no additively homomorphic

schemes in the literature. The chapter presents the first such scheme: an identity-based

XOR-homomorphic scheme, which is shown to be semantically secure in the random

oracle model under the quadratic residuosity assumption. XOR-homomorphic schemes

have been employed in many applications including biometric authentication, sealed-bid

auctions and a 2-round protocol for the millionaire’s problem - an identity-based scheme

allows these applications to be adapted to the identity-based setting, enabling the bene-

fits that setting provides. Our scheme can also be generalized from supporting addition

modulo 2 (i.e. XOR) to addition modulo m for small m; the ciphertext size grows

quadratically with m. Consequently, m must be polynomially sized. In future work,

it would be valuable to explore more space-efficient additively homomorphic schemes,

and move beyond the identity-based functionality to support richer access policies. The

176



“ideal” additively homomorphic scheme would support superpolynomially-sized m (like

Paillier [154] in the public-key setting) and a rich class of access policies (such as the

class of Boolean formulas), and be provably fully secure in the standard model under a

well-established assumption. Chapter 4 advances towards this goal by giving the first

instance of an additively homomorphic ABGHE scheme.

In Chapter 5, we turned our attention towards the second primary form of homo-

morphic encryption, FHE, and obtained a valuable result. We showed that a variant

of attribute-based FHE (ABFHE) where the arity of the supported circuits is bounded

by some integer N (which can be specified in advance of generating the public parame-

ters) can be constructed from multi-key FHE and leveled ABFHE. To be more precise,

we presented a “compiler” that can transform a leveled ABFHE capable of evaluating

Boolean circuits of depth O(log (Nλ)) into an ABFHE (with the same D) that can evalu-

ate all Boolean circuits with N inputs over the domain {0, 1}w for some arbitrarily large

w (the parameter w is needed to satisfy the syntax whereas in practice, the N inputs

can be taken from {0, 1}+). The result lets us trade “breadth” for “depth” because

we can evaluate circuits of unbounded depth. This is important because it circumvents

impediments in the attribute-based setting to realizing the technique of bootstrapping,

which is the only known way of evaluating circuits of unbounded depth. Our result re-

lies on multikey FHE [135], a primitive that facilitates homomorphic evaluation on data

encrypted under multiple independently-generated keys.

A constraint on our result from Chapter 5 is that only circuits using inputs from N

senders can be evaluated on. On the other hand, since the parameters of the scheme

grow with O(logN), we can choose N to be exponentially large and hence, in practice

this will likely suffice for most practical evaluations.

In Chapter 6, our focus turns to constructing a multi-attribute leveled ABFHE

scheme. By leveled, it is meant that the scheme can only evaluate circuits whose depth is

at most some a priori fixed parameter L (it can be instantiated for any L). This suffices

for many applications because it may be known beforehand that only computations of
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a particular complexity ever need to be evaluated. Furthermore, multi-attribute means

the scheme can be instantiated for any maximum degree of composition, D. Recall that

this means that ciphertexts with up to D different attributes can be used together in an

evaluation. So in summary, a multi-attribute leveled scheme can be instantiated with

parameters L and D.

We succeed in constructing such a scheme for the identity-based class of access poli-

cies. In other words, we present a multi-identity leveled identity-based FHE (IBFHE).

This construction is shown to be selectively-secure in the random oracle model under

the hardness of the Learning with Errors (LWE) problem, a standard cryptographic

assumption, with a worst-case reduction to hard problems on lattices. This is the first

concrete construction of multi-identity leveled FHE. While there is a generic transforma-

tion from a selectively-secure scheme to a fully-secure scheme [34], this transformation

incurs a degradation in security by a factor of 2s where s = |I| is the size of the iden-

tity space. Obtaining full security “directly” remains an open problem. Another goal

of future work is to eliminate the random oracle, and prove security in the standard

model. Our techniques in Chapter 6 are shown to be incompatible for access policies be-

yond the identity-based functionality, and hence new techniques are needed to construct

multi-attribute leveled ABFHE.

We can derive some corollaries from the conclusions of Chapter 6. One of these is that

we can invoke our compiler from Chapter 5 with the multi-identity leveled IBFHE from

Chapter 6 (this scheme can be naturally set up to evaluate circuits of polylogarithmic

depth) to realize a multi-identity scheme that can evaluate all Boolean circuits with N

inputs over the domain {0, 1}w (recall that w can be arbitrarily large).

Another contribution of Chapter 6 that comes about as an artifact of our main

construction is a multikey FHE scheme with security in the standard model from LWE.

This is an important contribution for two reasons. Firstly, it is the first multikey FHE

scheme from a well-established assumption such as LWE; the only other multikey FHE

in the literature [135] relies on a non-standard assumption, namely the Decisional Small
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Polynomial Ratio (DSPR) assumption. Secondly our multikey FHE has a decryption

circuit in NC1, as opposed to NC2 in case of the other multikey FHE scheme from

the literature [135]. This contribution lets us derive another corollary. We can employ

the compiler from Chapter 5 and instantiate the multikey FHE requirement with our

multikey FHE scheme. This means we can strengthen the result by only assuming LWE

in the proof of security and only requiring an ABHE capable of evaluating circuits of

depth O(log (Nλ)) where N is the desired upper bound in arity. The downside is that

our multikey FHE is considerably less efficient than the one from [135].

In Chapter 7 we derive one of the strongest results of the thesis. We present a theoret-

ical feasibility result for “pure” ABFHE (i.e. supporting evaluation of any polynomial-

size circuit), both single-attribute and multi-attribute. Furthermore, our result is ob-

tained constructively - we present a construction of both single-attribute and multi-

attribute ABFHE from the notion of indistinguishability obfuscation. An immediate

consequence of this is a positive answer to Naccache’s open problem of “identity-based

fully homomorphic encryption” proposed at his talk at CHES/Crypto 2010 [146]. This

is quite a surprising result. This stems from the fact that bootstrapping is the only

known way of achieving “pure” FHE but bootstrapping is extremely challenging in the

attribute-based setting. This is because bootstrapping with a particular public key relies

on having an encryption under that public key of the corresponding secret key. In the

public-key setting, this can be achieved by publishing an encryption of the secret key

as part of the public key (a circular security assumption is necessary to prove security).

This approach is particularly challenging in the attribute-based setting because for ev-

ery attribute there must be a way to derive an encryption of a secret key under that

attribute from the public parameters alone!

While our constructions in Chapter 7 serve as interesting feasibility results, they rely

on the computationally intensive machinery of indistinguishability obfuscation, rendering

them impractical at the present time.
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8.0.1 Future Work

In this section, we amalgamate directions mentioned for future work. Chapter 4 raises

the open problem of constructing additively homomorphic IBE for a superpolymomially-

sized message space. Furthermore, constructing an attribute-based additively homomor-

phic scheme would be another goal of future work.

In Chapter 6, a multi-identity leveled IBFHE from the LWE problem is presented.

An outstanding goal is to construct a multi-attribute leveled ABFHE from LWE. This is

an enticing problem for future work. Note that our multi-identity leveled IBFHE relies

on the random oracle model; another goal of future work is to achieve security in the

standard model.

In Chapter 7, a feasibility result is presented for multi-attribute (“pure”) ABFHE,

which relies on the computationally expensive machinery of indistinguishability obfusca-

tion. Finding an equivalent scheme that does not rely on indistinguishability obfuscation

is an open problem as is a scheme that only requires indistinguishability obfuscation for

infrequently occurring operations, such as the operation of bootstrapping. We presented

a compiler to transform a leveled IBFHE satisfying certain properties into a “pure”

IBFHE. However finding a leveled IBFHE that satisfies the required properties is a

topic for future work. The same holds with respect to ABFHE.

In this thesis, our work has assumed the semi-honest model in which the evaluator

is expected to be semi-honest. As such, we have not considered verifiability - this is an

open issue for work future work.
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Appendix A

Glossary

G1: Group: A group is a set S together with a binary operation ∗ : S × S → S

satisfying the following properties:

• The operation ∗ is associative.

• There is a unique element 1 ∈ S (note we use multiplicative notation), called

the identity element such that for all x ∈ S, we have x ∗ 1 = 1 ∗ x = x.

• For every x ∈ S, there is an element x−1 ∈ S with x ∗ x−1 = x−1 ∗ x = 1.

We denote a group with the pair (S, ∗). A group is said to be Abelian if it is

commutative i.e. x ∗ y = y ∗ x for every x, y ∈ S.

G2: Ring: A ring is a set R together with two binary operations + : R × R → R

and · : R × R → R that satisfies the following properties. Note that + is called

addition and · is called multiplication.

• (R,+) is an Abelian group.

• There is a multiplicative identity element i.e. an element 1 ∈ R with x · 1 =

1 · x = x for every x ∈ R.

• The operation · is associative.
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• Multiplication distributes over addition; that is, for every x, y, z ∈ R we have

– x · (y + z) = (x · y) + (x · z)

– (y + z) · x = (y · x) + (z · x).

Let N be a positive integer. An example of a ring is the set of integers modulo N ,

which is denoted by ZN .

G3: Homomorphism: A homomorphism is a structure-preserving map between two

mathematical objects. A homomorphism between two algebraic structures (e.g:

groups) (A, ∗) and (B, ◦) is a map f : A→ B that satisfies the following property:

f(x ∗ y) = f(x) ◦ f(y) for all x, y ∈ A.

A ring homomorphism between two rings R and S is a map f that satisfies the

above with respect to both operations of the ring.

G4: Negligible Probability: A quantity is said to be negligible with respect to

some parameter κ, written negl(κ), if it is asymptotically bounded from above by

the reciprocal of all polynomials in κ.

G5: Security Parameter: The parameter that represents the difficulty of breaking

a scheme. This parameter also measures the input size - so other parameters can

be expressed in terms of it.

G6: Semantic Security (IND-CPA: An encryption scheme is said to be semantically

secure if an adversary that runs in polynomial time who is given a ciphertext c

cannot learn anything about what c encrypts, except with negligible probability.

This notion has been shown to be equivalent to the following game played between

a challenger C and an adversary A. Note that A is a probabilistic polynomial time

(PPT) algorithm.

• C gives A the parameters of the scheme. If the scheme is public-key, the

adversary is given the public key.
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• The adversary chooses two equal-length messages µ0, µ1 ∈M from the scheme’s

message space M.

• The challenger chooses a bit b at random. The challenger gives an encryption

of µb to the adversary.

• The adversary outputs a guess b′ ∈ {0, 1}.

The adversary wins the game if b = b′. The advantage of A is defined as the proba-

bility of it winning the above game minus 1/2. If no polynomial-time adversary has

non-negligible advantage, the scheme is said to be IND-CPA secure (indistinguisha-

bility under a chosen plaintext attack). As aforementioned, IND-CPA is equivalent

to that of semantic security, and as such, the two terms are used interchangeably.

G7: Random Oracle Model: A random oracle O is a theoretical black box that can

be queried with an element from its input domain, and it responds with an element

from its output domain. For every unique query x, it answers with a randomly

chosen element y of its output domain, and it consistently answers with the same

element y on all subsequent queries for x. In the random oracle model, a function

(such as a hash function) that is used in a cryptographic scheme is replaced by a

random oracle in the proof of security.

G8: Reductions: Let p be a problem. Suppose there is an algorithm A that breaks

the security of a scheme E e.g: A attacks the IND-CPA security of E . Suppose

A can be used to solve p with extra work w. If the extra work w can be done

in polynomial time, then an algorithm such as A that breaks E can be used to

efficiently (as in polynomial time) solve p. Hence p can be polynomially reduced

to breaking E , which implies breaking E is at least as hard as solving p.

G9: Hybrid Argument: The following description is based on [4]. A hybrid ar-

gument is a proof strategy to show that two distributions are computationally

indistinguishable. A sequence of polynomially many (in the security parameter)

207



distributions D1, . . . ,Dt (referred to as hybrids) are defined. The distributions D1

and Dt are the ones to be shown computationally indistinguishable. This is done

by proving each pair of adjacent distributions to be computationally indistinguish-

able. This is achieved usually by changing one aspect of the distribution such as

replacing a cryptographic primitive with its idealization. Because computational

indistinguishability is transitive across a polynomial number of distributions, the

distributions D1 and Dt are therefore computationally indistinguishable.
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Appendix B

Properties of Attribute Based

Group Homomorphic Encryption

in this section we will establish some properties about ABGHE schemes. To help us

in this task, we first define a particular ABGHE scheme which we make reference to

throughout the section. Let E = (G,K,E,D) be a ABGHE scheme satisfying Defini-

tion 4.1.1 with message space (M, ·), attribute space A, access policies F, ciphertext

space Ĉ and binary operation ∗ : Ĉ × Ĉ → Ĉ. Fix any (PP,MSK) ← G(1λ). Note that

the identity element of (M, ·) is written as 1 ∈ M. We assume that F is free of any

degenerate policies; that is, policies f with f(a) = 0 ∀a ∈ A.

B.1 Partition of Access Policies

As discussed in Chapter 4, a fundamental property of an ABGHE scheme is that its class

of access policies F can be partitioned into equivalence classes via a natural relation ∼.

The relation is defined for any f, g ∈ F as

f ∼ g iff supp(f) ∩ supp(g) 6= ∅.
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Now ∼ is clearly reflexive and symmetric, but it is not necessarily transitive in the case

of an arbitrary ABHE scheme. However if the scheme is group homomorphic, i.e. it

satisfies Definition 4.1.1, then ∼ is also transitive, and hence an equivalence relation.

We now give the proof of Lemma 4.2.1 first stated in Chapter 4.

Lemma 4.2.1 (transitivity of ∼). Let f1, f2, g ∈ F such that supp(f1)∩ supp(g) 6= ∅ and

supp(f2) ∩ supp(g) 6= ∅. Then supp(f1) ∩ supp(f2) 6= ∅.

Proof. By GH.1 in Definition 4.1.1 we have that Cf1 ⊂ Ĉ, Cf2 ⊂ Ĉ and Cg ⊆ Ĉ are

non-trivial groups under the operation ∗. Let e be the identity element of Cg. For any

x ∈ Cf1 ∩ Cg we have x ∗ e = x. Therefore e ∈ Cf1 . Analogously, we have e ∈ Cf2 .

It follows from GH.2 in Definition 4.1.1 that Dskf1
(e) = Dskf2

(e) = 1 ∈ M for any

skf1 ← K(MSK, f1) and skf2 ← K(MSK, f2). It follows that e is associated with an

attribute that satisfies both f1 and f2.

B.2 Generic Transformation for Multiple Attributes

As mentioned in Chapter 4, an ABGHE scheme natively follows the atomic model of

decryption i.e. K = 1. It is possible to construct a related scheme E ′ = (G′,K ′, E′, D′)

that is group homomorphic for (M, ·), but with D = K = |A|. Technically E ′ is not

an ABGHE since it doesn’t satisfy Definition 4.1.1. Instead E ′ is a group homomorphic

scheme that follows the collaborative model of decryption. Its salient feature is that

ciphertexts grow linearly with the degree of composition.

We assume without loss of generality that there is a strict total order ≺ defined on A.

We also assume that E is not attribute-hiding; more precisely, the attribute associated

with a ciphertext is readily obtained from the ciphertext (if this is not naturally the

case, it can be done by appending the attribute to the ciphertext). Therefore, we define

the function attr : Ĉ → A that gives the attribute associated with a ciphertext.

Now the ciphertext space Ĉ′ of E ′ is defined as Ĉ′ , {(c1, . . . , ct) ∈ Ĉ∗ | c1, . . . , ct ∈

Ĉ, attr(c1) ≺ · · · ≺ attr(ct), |t| ≤ |A|}. The encryption algorithm E′ is set to E, and it
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outputs ciphertexts in C ⊆ Ĉ ⊆ Ĉ′. We define a binary operation † : Ĉ′ × Ĉ′ → Ĉ′ as

follows. Given two ciphertexts CT1 := (c
(1)
1 , . . . , c

(1)
t1

) ∈ Ĉ′ and CT2 := (c
(2)
1 , . . . , c

(2)
t2

) ∈

Ĉ′, we compute CT3 := CT1 † CT2 in the following way: (1). apply merge sort to the

list of elements in CT1 and CT2 with respect to the total order ≺; (2). for every pair of

adjacent elements c(1), c(2) with matching attributes, compute c← c(1) ∗ c(2) and replace

the occurrence of c(1), c(2) in the list with c. The resulting list of elements in CT3 has

length equal to t1 + t2 − t′ where t′ is the number of matching attributes. So the size of

an evaluated ciphertext grows linearly with the degree of composition.

However we only want a decryptor to learn a single value µ ∈ M. In other words,

she should not be able learn about the components of this value, where each component

is encrypted under a distinct attribute. To resolve this, a re-randomization step is

performed after computing CT3 = CT1 † CT2. Let CT3 = (c1, . . . , cd ). The evaluator

generates uniformly random r1, . . . , rd−1
$←−M, and sets rd ← (r1 · · · rd−1)−1. Therefore

we have r1 · · · rd = 1 ∈ M. Then the evaluator sets ci ← ci ∗ EPP(attr(ci), ri) for every

i ∈ [d ] and outputs CT′ := (c1, . . . , cd ).

A decryptor uses secret keys for her policies f1, . . . , fk to decrypt CT′ as follows.

Firstly, she uses one of her policies to recover µi ∈ M from each component ci for

i ∈ [d ]. Then she outputs µ1 · · ·µd ∈M.
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Appendix C

Time-Performant Anonymous

IBE from Quadratic Residuosity

C.0.1 Security Definition for Anonymous IBE (ANON-IND-ID-CPA)

An IBE scheme is said to be anonymous if any PPT adversary has only a negligible

advantage in the following game. This is referred to as ANON-IND-ID-CPA security.

At the beginning of the game, the adversary A is handed the public parameters. It

then proceeds to make queries for secret keys corresponding to identities id1, . . . , idq1

for some integer q1 that is polynomial in the security parameter. Then it sends to the

challenger two identities id∗0 and id∗1 such that id∗0 6= id∗1 6= idi for 1 ≤ i ≤ q1. It also

sends two messages m0 and m1. The challenger samples a bit b uniformly, and sends the

encryption of mb under id∗b to A. In the final phase, A is allowed to query secret keys

for further identities idq1+1, . . . , idq1+q2 where q2 is polynomial in the security parameter,

and id∗0 6= id∗1 6= idq1+i for 1 ≤ i ≤ q2. Finally, A outputs a guess b′ and is said to win if

b′ = b.
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C.0.2 Overview of our construction

In order to understood our construction, the reader must be familiar with the XOR-

homomorphic IBE presented in Chapter 4.

Let a be an integer in J(N). Then let Ra be the quotient ring R/(x2 − a). Recall

the generalization of Galbraith’s test to the ring R as follows.

Definition C.0.1 (Galbraith’s Test over R). Define Galbraith’s Test for the ring R as

the function GT : ZN ×R→ {−1, 0,+1} given by

GT(a, c(x), N) =

(
c2

0 − c2
1a

N

)
.

Define the subset Ga ⊂ Ra as follows:

Ga = {c(x) ∈ Ra : GT(a, c(x), N) = 1}.

Therefore, this is the subset of Ra that passes Galbraith’s test. Define the subset Ḡa ⊂

Ra as follows:

Ḡa = {c(x) ∈ Ra : GT(a, c(x), N) = −1}.

Correspondingly, this is the subset of Ra that fails Galbraith’s test. Now define the

subset Sa ⊂ Ga:

Sa = {2hx+ (t+ ah2t−1) ∈ Ga | h ∈ ZN , t, (t+ ah2t−1) ∈ Z∗N}.

The subset Sa is precisely the image of the algorithm E defined in Chapter 4, Sec-

tion 4.4.5, which takes as input an integer a ∈ J(N) (i.e.

(
a

N

)
= 1) along with a

message bit m ∈ {0, 1} and produces an element of Sa that encrypts m. This is central

to the XOR-homomorphic scheme xhIBE from Chapter 4. Like Cocks’ original scheme,

xhIBE requires a ciphertext to have two components. As such, E can be viewed as the

encryption algorithm for a single component. Accordingly, to encrypt a message m in

xhIBE, the sender runs E(a,m) and E(−a,m) to produce the first and second component

of a ciphertext respectively.

Let g(x) ∈ Ḡa. Below are some basic facts which we prove in Section C.0.4.
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1. g(x)Ga = Ḡa.

2. {h(x)
$←− Ḡa} ≈ {g(x)h′(x) | h′(x)

$←− Ga}.

3. {h(x)
$←− Ḡa} ≈

C
{g(x)h′(x) | h′(x)

$←− Sa}.

Property 3 states that the uniform distribution defined over Ḡa and the distribution of

multiplying g(x) by uniformly random elements from Sa are computationally indistin-

guishable (without access to p and q).

We need two hash functions. Like Cocks’ scheme, a full-domain hash H : {0, 1}∗ →

J(N) is employed that maps identity strings to elements of ZN whose Jacobi symbol is

+1. Another hash function H ′ : {0, 1}∗ → R is needed that maps an identity string

id to an element g(x) ∈ R such that GT(H(id), g(x), N) = GT(−H(id), g(x), N) = −1

i.e. the g(x) is taken to pass Galbraith’s test for both a = H(id) and −a. Roughly

speaking, an example of constructing such as hash function using H is via a form of

rejection sampling i.e. to sample g′(x)i
$←− H(id ‖ i) for consecutive integers i > 0 until

GT(a, g′(x)i, N) = GT(−a, g′(x)i, N) = −1. In the security proofs, H is modelled as a

random oracle on J(N) and H ′ is modelled as a random oracle whose response when

queried on id is distributed according to the uniform distribution on ḠH(id)∩Ḡ−H(id). To

anonymize a ciphertext component (recall that this discussion is simplified to deal with

a single component of a ciphertext corresponding to a = H(id), the steps are repeated

for the case of −a) c(x) associated with an identity id, the following steps are performed:

1. a← H(id)

2. c′(x)← E(a, 0).

3. Uniformly sample a bit b
$←− {0, 1}.

4. If b = 0, output c′(x)c(x).

5. Else compute g(x)← H ′(id), and output g(x)c(x)c′(x).
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Note that the construction is universally anonymous in that anyone can anonymize a

ciphertext without having the secret key for the target identity and without access to

the random coins used by the encryptor.

The decryption function D′ for our construction is defined in terms of D.

D′(r, c(x)) =


D(r, c(x))⊕D(r, g(x)) if c(x) ∈ Ḡa

D(r, c(x)) if c(x) ∈ Ga

⊥ otherwise

C.0.3 Formal Description

Our scheme is referred to as UAIBE for the remainder of the paper; a formal description

is as follows. Setup(1λ) : On input a security parameter 1λ in unary, generate (p, q)←

BlumGen(1λ). Compute N = pq. Output public parameters PP = (N,H,H ′) and master

secret key MSK = (N, p, q), where H is a hash function H : {0, 1}∗ → J(N), and H ′ is

a hash function H ′ : {0, 1}∗ → R with the property that for any identity id ∈ {0, 1}∗,

a← H(id) and g(x)← H ′(id), it holds that

GT(a, g(x), N) = GT(−a, g(x), N) = −1.

KeyGen(MSK, id) : On input master secret key MSK = (N, p, q) and identity id ∈

{0, 1}∗, perform the following steps:

1. Compute a← H(id) ∈ J(N).

2. If r ∈ QR(N), compute the square root r = a1/2;

3. Else compute r = (−a)1/2.

4. Output (N, id, r) as the secret key for identity id.

See the description of Cocks’ scheme in Section 4.4.4 for a convenient way to compute a

square root in ZN deterministically.
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Encrypt(PP, id,m): On input public parameters PP = (N,H,H ′), an identity id ∈

{0, 1}∗, and message m ∈ {0, 1} run:

1. Compute a← H(id) ∈ J(N).

2. Compute g(x)← H ′(id) ∈ R.

3. Compute c(x)← E(a,m).

4. Compute d(x)← E(−a,m).

5. Uniformly sample two bits v1, v2
$←− {0, 1}.

6. If v1 = 1, then set c(x)← c(x) ∗ g(x).

7. If v2 = 1, then set d(x)← d(x) ∗ g(x).

8. Output ~c := (c(x), d(x)).

Decrypt(skid, ~c): On input a secret key skid = (N, id, r) and a ciphertext ~c = (c(x), d(x)),

do:

1. Compute a← H(id) ∈ J(N).

2. Compute g(x)← H ′(id) ∈ R.

3. If r2 ≡ a mod N , set e(x)← c(x). Else if r2 ≡ −a mod N , set e(x)← d(x). Else

output ⊥ and abort.

4. If GT(r2 mod N, e(x)) = −1, set e(x)← e(x) ∗ g(x).

5. Output D(r, e(x)).

C.0.4 Security

Lemma C.0.1. Let f(x), g(x) ∈ Ra. Then GT(a, f(x)g(x), N) = GT(a, f(x), N) ·

GT(a, g(x), N).
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Proof. Consider the product v(x) = f(x)g(x) ∈ Ra. We have that v0 = f0g0 + f1g1a

and v1 = f0g1 + f1g0. It is easy to verify that(
(f0g0 + f1g1a)2 − (f0g1 + f1g0)2a

N

)
=

(
(f2

0 − af2
1 )(g2

0 − ag2
1)

N

)
= GT(a, f(x), N)·GT(a, g(x), N).

.

Lemma C.0.2. Let g(x) ∈ Ḡa. Then g(x) ·Ga = Ḡa.

Proof. By Lemma C.0.1, g(x)h(x) ∈ Ḡa for any h(x) ∈ Ga.

By Lemma 1 in [60], Ga is a multiplicative group in Ra. Hence, |g(x)·Ga| = |Ga|. We

claim that every t(x) ∈ Ḡa can be expressed as g(x)t′(x) for some t′(x) ∈ Ga. Assume

the contrary for the purpose of contradiction i.e. there exists a t(x) /∈ g(x)·Ga. It follows

that t(x) · Ga ∩ g(x) · Ga = ∅. But by Lemma C.0.1, t(x)2 ∈ Ga and g(x)t(x) ∈ Ga.

From the commutativity of Ra, we have g(x) · t(x)2 = t(x) · (t(x)g(x)), which implies

that t(x) ·Ga ∩ g(x) ·Ga 6= ∅, a contradiction. The lemma follows.

We include the following result from [60] that is used in the proofs below.

Corollary C.0.1. Let g(x) ∈ Ḡa. Then

1. {h(x)
$←− Ḡa} ≈ {g(x)h′(x) | h′(x)

$←− Ga}.

2. {h(x)
$←− Ḡa} ≈

C
{g(x)h′(x) | h′(x)

$←− Sa}.

Proof. (1). From Lemma C.0.2, each element in Ḡa can be represented as g(x)h′(x) for

a unique h′(x) ∈ Ga. Therefore, if h′(x) is sampled uniformly from Ga, then h′(x)g(x)

is uniformly distributed in Ḡa.

(2). By Corollary 4.4.1 in Chapter 4, Ga ≈
C
Sa without knowledge of the prime

factors of N , and thus this property follows from (1).

Theorem C.0.1. UAIBE is ANON-IND-ID-CPA-secure in the random oracle model

assuming the hardness of the quadratic residuosity problem.
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Proof. We prove the theorem by showing that a poly-bounded adversary has a negligible

advantage distinguishing between the following series of games.

Game 0 This is the ANON-IND-ID-CPA game between the challenger and an adversary

A with the scheme UAIBE as described in Section C.0.3.

Game 1 The only change in this game from Game 0 is as follows. Let b denote the

bit chosen by the challenger to choose either between the tuples (id0,m0) or (id1,m1)

supplied by the adversary. Let a = H(idb). Instead of encrypting mb, we instead encrypt

a random bit b′ ∈ {0, 1} i.e. we have c(x)← E(a, b′) and d(x)← E(−a, b′).

We argue that if there is an efficient distinguisher A that can distinguish between

Game 0 and Game 1, then there is efficient adversary B that can use A to attack the

IND-ID-CPA security of xhIBE. Secret key queries from A are relayed to B’s oracle.

When A chooses its challenge tuples (id0,m0) and (id1,m1), perform the following:

1. If b′ = mb, output a random bit and abort.

2. Else choose challenge identity id∗ = idb.

3. When B’s IND-ID-CPA challenger responds with a challenge ciphertext (c(x)∗, d(x)∗),

choose two random bits u0, u1
$←− {0, 1}: if u0 = 1, set c(x)∗ ← c(x)∗g(x); if u1 = 1,

set d(x)∗ ← d(x)∗g(x) where g(x)← H ′(id∗) (this oracle can be provided by B).

4. Give (c(x)∗, d(x)∗) to A, and output A’s guess.

If A has advantage ε distinguishing games Game 0 and Game 1, then B has an advantage

of 1
2ε.

Game 2 To recap, note that the challenge ciphertexts in Game 1 have the distribution

{(c(x), d(x))
$←− Sa × S−a : a = H(idb), b

$←− {0, 1}}. This is because by definition for

any a ∈ J(N), we have Sa = image(E(a, ·)) and S−a = image(E(−a, ·)). The next step is

to replace Sa with Ga. Instead of setting c(x) ← E(a, b′) where a = H(idb), we choose

c(x)
$←− Ga.
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Corollary 4.4.1 in Chapter 4 shows that Sa ≈
C
Ga for any a ∈ J(N) without access

to the factorization of N . We follow a similar argument to the above to “embed” the

challenge element from either Sa or Ga. We handle secret key queries without the factors

of N by programming the oracle responses from H. Suppose the adversary queries the

secret key for an identity id′. Assume without loss of generality that it first queries

the random oracle H on id′. On the first such query, we uniformly sample a secret key

r′
$←− Z∗N , set a′ ← r′2 mod N ∈ J(N), store the tuple (id′, r′, a′) and return a′. This

has the correct distribution and secret keys can easily be extracted. A non-negligible

advantage distinguishing Game 1 and Game 2 translates to a non-negligible advantage

distinguishing the distributions Sa and Ga, which contradicts Corollary 2 in [60].

Game 3 The change from Game 2 to Game 3 is similar to that from Game 1 to Game

2, namely the second ciphertext component d(x) is sampled from G−a instead of S−a

where a = H(idb). The argument for indistuinguishability is analogous to that of the

last game.

Game 4 This game is identical to Game 3 except that instead of setting a ← H(idb),

we instead set a
$←− J(N). Furthermore, step 2 of Encrypt is replaced with g(x) ←

Ḡa ∪ Ḡ−a ∈ R.

Clearly, the adversary has a zero advantage in this game since a ciphertext reveals

nothing about the challenger’s bit b. We now show that a ciphertext in Game 4 is

indistinguishable from a ciphertext in Game 3. Observe that each component of the

latter is computationally indistinguishable from a uniformly random element of the set

of units in R. The units in R are precisely those elements u(x) satisfying

GT(a′, u(x), N) ∈ {−1, 1}

with respect to any a′ ∈ J(N); that is, the set of units is Ga′ ∪ Ḡa′ .

In Game 3, half of the time the ciphertext component c(x) (resp. d(x)) is uniformly

distributed in Ḡa (resp. Ḡ−a) according to Corollary C.0.1, and the other half it is

uniformly distributed in Ga (resp. G−a), by definition of Game 3. Thus, each component
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is a uniformly random element of the set of units in R. But similarly, we have that each

component of a ciphertext in Game 4 is also uniformly distributed in the set of units in

R. Therefore, both games are indistinguishable to a poly-bounded adversary.

We can conclude that an adversary’s advantage is negligible distinguishing between

Game 0 and Game 4, which implies that its advantage attacking the ANON-IND-ID-

CPA security of UAIBE is also negligible.

C.0.5 Comparison with Ateniese and Gasti’s Construction

Our proposed construction has several advantages. Firstly, it is arguably conceptually

simpler than existing anonymous variants of Cocks’ scheme. Furthermore, like the con-

struction put forward in [20], it is universally anonymous, which may be useful in settings

where messages pass through multiple systems, some of which need to know the recipi-

ent’s identity whereas others should not be privy to this information. Hence, a trusted

proxy can be tasked with anonymizing ciphertexts without access to the secret key. The

scheme is also group-homomorphic for the XOR operation; this is useful in some settings

as discussed in [60], although anonymity must be sacrificed for homomorphic operations

to be performed. Another advantage of our scheme is that it faster run-time performance

than other anonymous IBEs based on quadratic residuosity. We elaborate more on its

performance in this section by comparing it to its nearest rival (in terms of run-tie per-

formance), namely the Ateniese and Gasti (AG) scheme from [20]. However, the most

significant downside of the scheme is its poor space efficiency; ciphertext expansion is

double that of Cocks, and almost double that of AG.

C.0.6 Analysis of Ateniese and Gasti’s Construction (AG)

Encryption in the AG scheme requires a number of Galbraith test computations per

bit of plaintext. Recall that evaluating a Galbraith test entails a costly Jacobi symbol

computation. The main intuition behind AG is to “embed” a Cocks ciphertext within a

sequence of integers Ti. Its position, k, in such a sequence is distributed according to a
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geometric distribution with parameter p = 1/2. Furthermore, the terms T1, . . . , Tk−1 are

chosen such that GT(a, Ti, N) = −1 for i ∈ [k − 1]. The intuition behind this approach

is grounded in the fact that Galbraith’s test can be shown (see Section 2.3 in [20]) to

be the “best test” possible in attacking the anonymity of Cocks’ scheme. Since the

probability of a random element in Z∗N passing Galbraith’s test is 1/2, the position of

the first element in a random sequence to pass Galbraith’s test is distributed according

to a geometric distribution with parameter p = 1/2. A hash function is used to generate

the sequence of integers based on short binary strings incorporated in an AG ciphertext.

It sufficient here to note that ` is a global parameter in AG that determines the number

of such binary strings (this is closely related to the number of Galbraith tests that must

be performed on average during encryption).

Let Y be a random variable representing the number of Galbraith tests evaluated in

AG per bit of plaintext. A lower bound for the expected value E[Y ] of Y can be derived

as

E[Y ] ≥ 4(1 + (log κ− 1) · 2−`)

where κ is the security parameter. A rough lower bound on the variance Var(Y ) is

Var(Y ) ≥ 22−2`(−8 + 7 · 22` + 21+` − 3 · 22+``).

Ateniese and Gasti found ` = 6 to be a good compromise between ciphertext size and

performance. Setting ` = 6 results in a mean number of Galbraith tests per bit of

plaintext of ≈ 4.22 with a standard deviation of ≈ 6.92. Our scheme on the other hand

does not require any Galbraith test to be performed during encryption.

C.1 Experimental Results

To perform an empirical comparison between our scheme and AG, both schemes were

implemented in C using the OpenSSL library. Our implementation was based on code

provided by the authors of [20]. The following experiment was run for each of the four
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schemes: Cocks, AG, UAIBE and JB. The latter is a shorthand for our modification

to the construction of Jhanwar and Barua described in [121], which in turn is a variant

of the non-anonymous IBE system from [39]. Note that JB is not anonymous and its

inclusion here is to demonstrate the fact that it achieves comparable efficiency to Cocks.

Hence, AG and UAIBE are the two anonymous schemes being compared.

1. For each t in the set {1024, 2048, 3072, 4096}:

(a) A modulus N of t bits is generated along with primes p and q that constitute

the master secret key.

(b) The public key a and secret key r are derived for some predefined identity

string id. A random 128-bit message m is generated.

(c) The following is repeated 50 times:

i. Encrypt m under identity id to produce ciphertext c.

ii. Decrypt c with secret key r and verify the decrypted message matches

m.

iii. The time elapsed performing step 3.(a) and 3.(b) is calculated.

(d) An average over the times calculated in step 3.(c) is obtained.

The code was compiled with optimization flag ’-02’ using GCC version 4.4.5-8 with

OpenSSL version 0.9.8o. The benchmarks were executed on a machine with 4 GB of

RAM and an Intel Core i5-3340M CPU clocked at 2.70 GHz. The benchmark machine

was running GNU/Linux 3.2.41 (x86-64). Our implementation however was unoptimized

and did not exploit parallelization. For the interested reader, the implementation of

encryption in Cocks, AG and UAIBE involved precomputation of random integers with

Jacobi symbol −1 and +1. This is not needed for JB.

The results of the experiment (average encryption times) are shown in Figure C.1.

Note that UAIBE and Cocks exhibit similar performance whereas JB is only marginally

less efficient than Cocks. On the other hand, AG performs notably worse than UAIBE
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Fig. C.1: Average times to encrypt a 128-bit message for Cocks, AG and UAIBE.

on average. To illustrate the comparison, encryption and decryption times for all four

schemes for the case of a 1024-bit modulus are presented in Table C.1.
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Table C.1: Encryption and decryption times in milliseconds for a 128-bit message with

a key size of 1024 bits, averaged over 50 runs.

Scheme Encryption -Mean (Std Dev) Decryption - Mean (Std Dev)

Cocks 77.39 (3.05) 13.32 (0.14)

AG 140.35 (19.22) 40.79 (1.68)

UAIBE 79.02 (3.14) 27.52 (0.41)

JB 86.78 (0.93) 21.97 (0.42)
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Appendix D

Compilers for Bootstrappable

IBFHE

D.1 A Compiler to Transform a Leveled IBFHE into a

“Pure” IBFHE

So far we have obtained “pure” IBFHE, ABFHE and multi-attribute ABFHE schemes.

Although these constructions are impractical at the current time, they serve as possi-

bility results for these primitives. Next we turn our attention to obtaining a “compiler”

to transform an arbitrary leveled IBFHE into a bootstrappable IBFHE, and as a conse-

quence, a “pure” IBFHE. One of the primary reasons for this is efficiency. One of the

reasons our previous constructions are impractical is that they rely on indistinguisha-

bility obfuscation for the frequently used process of deriving a public-key for a user’s

identity. With appropriate parameters, bootstrapping is a process that might be carried

out infrequently - or needed only in especially rare occasions. Therefore, preserving

the performance of existing leveled IBFHEs for encryption, decryption and evaluation

of “not-too-deep” circuits is desirable. But having the capability to bootstrap, even if

expensive, is useful in those cases where evaluation of a deep circuit is needed. This is
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particularly true in the identity-based setting because keys cannot be generated on a

once-off basis as they might be in many applications∗ of public-key FHE, nor can they

be changed as frequently, since all users of the identity-based infrastructure are affected.

Intuitively, the central idea to make a leveled IBFHE scheme bootstrappable is as

follows. Firstly, we include an obfuscation of a program in the public parameters. This

program “hides” the master secret key (trapdoor) of the scheme. Such a program can

use the trapdoor to generate a secret key for an identity, and then use that secret key

to output a bootstrapping key that is derived from the secret key. Hence, an evaluator

can run the obfuscated program to non-interactively accomplish bootstrapping.

However in order to prove selective security of such a scheme, we need to remove

all secret key information for the adversary’s target identity. The reason for this is

that our obfuscator is not a virtual black-box obfuscator i.e. we cannot argue that the

obfuscated program leaks no information about the trapdoor to the adversary. Therefore,

certain properties are needed of a leveled IBFHE scheme E before it is admissible for

our “compiler”.

D.1.1 Bootstrappable IBFHE

Let us recall the definition of leveled IBFHE. This definition is for the single-identity

setting, which we restrict ourselves for the moment to simplify notation.

Definition D.1.1. A Leveled IBFHE scheme with message space M, identity space I,

a class of circuits C ⊆ M∗ → M and ciphertext space C is a tuple of PPT algorithms

(Setup,KeyGen,Encrypt,Decrypt,Eval) defined as follows:

• Setup(1λ, 1L):

On input (in unary) a security parameter λ, and a number of levels L (maximum

∗For many applications of public-key FHE, leveled FHE is usually adequate because a new key pair

can be generated on a once-off basis for a particular circuit, whose depth is known, and a leveled FHE

can be parameterized accordingly.
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circuit depth to support) generate public parameters PP and a master secret key

MSK. Output (PP,MSK).

• KeyGen, Encrypt and Decrypt are defined the same as IBE.

• Eval(PP, C, c1, . . . , c`): On input public parameters PP, a circuit C ∈ C and ci-

phertexts c1, . . . , c` ∈ C, output an evaluated ciphertext c′ ∈ C.

More precisely, the scheme is required to satisfy the following properties:

• Over all choices of (PP,MSK) ← Setup(1λ), id ∈ I, C : M` → M ∈ {C ∈

C : depth(C) ≤ L}, µ1, . . . , µ` ∈ M, ci ← Encrypt(PP, id, µi) for i ∈ [`], and

c′ ← Eval(PP, C, c1, . . . , c`):

– Correctness

Decrypt(sk, c′) = C(µ1, . . . , µ`) (D.1.1)

for any sk← KeyGen(MSK, id).

– Compactness

|c′| = poly(λ) (D.1.2)

In a leveled fully homomorphic encryption scheme, the size of the public parameters

along with the size of keys are allowed to depend on L.

There are different ways to define bootstrapping; the formulation here was chosen to

best fit with the results in this chapter. We assume without loss of generality that the

class of circuits C supported by the scheme is built from a set of binary operations e.g:

{⊕,�} i.e. ⊕ :M×M→M and � :M×M→M.

Definition D.1.2. A leveled IBFHE is said to be bootstrappable if there exists a pair of

PPT algorithms

(GenBootstrapKey,Bootstrap) defined as follows:

• GenBootstrapKey(PP, id) : takes as input public parameters PP and an identity id,

and outputs a bootstrapping key bkid.
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• Bootstrap(PP, bkid, c) takes as input public parameters PP, a bootstrapping key

bkid for identity id, and a ciphertext c ∈ C, and outputs a ciphertext c′ ∈ C.

Over all (PP,MSK): for every pair of ciphertexts c1, c2 ∈ C, all identities id and all

secret keys skid and for all ◦ ∈ {⊕,�}:

Decrypt(skid,Eval(◦,Bootstrap(PP, id, c1),Bootstrap(PP, id, c2))

= Decrypt(skid, c1) ◦ Decrypt(skid, c2).

Informally, what the above definition says is that at least one additional homomorphic

operation (either ⊕ or �) can be applied to a pair of “refreshed” (i.e. bootstrapped)

ciphertexts before bootstrapping is needed again. For a more thorough discussion on

bootstrapping, we refer the reader to [93].

D.1.2 Weakly-bootstrappable IBFHE

Our starting point is leveled IBFHE schemes, such as those constructed via the GSW

compiler from [98], that support bootstrapping when given “encryptions” of secret key

bits. We refer to such “encryptions” of secret key bits as a bootstrapping key. As

mentioned earlier, there is no known way (in current schemes) to non-interactively derive

a bootstrapping key for a given identity from the public parameters alone. The only way

bootstrapping can be achieved in such schemes is when a bootstrapping key is passed to

the evaluator out-of-band, which breaks an attractive property of IBE, namely that all

keys are derivable from the public parameters and a user’s identity alone.

We now give a formal definition for a leveled IBFHE that supports bootstrapping

when supplied with a bootstrapping key, and we say such a scheme is weakly boot-

strappable. The main difference between weakly bootstrappable and bootstrappable (see

Definition D.1.2) is that the former requires a secret key for an identity in order to

generate a bootstrapping key, whereas the latter only needs an identity. Note that the

leveled IBFHEs from [98] are weakly bootstrappable.
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Definition D.1.3. A leveled IBFHE scheme E is said to be weakly bootstrappable if

there exists a pair of PPT algorithms (WGenBootstrapKey,Bootstrap) where Bootstrap

is defined as in Definition D.1.2 and WGenBootstrapKey is defined as follows:

• WGenBootstrapKey(PP, skid) : takes as input public parameters PP and a secret key

skid for identity id, and outputs a bootstrapping key bkid.

Like a bootstrappable leveled IBFHE, a weakly-bootstrappable leveled IBFHE re-

quires a circular security assumption to be made to prove IND-sID-CPA security. This is

because an adversary is given bkid∗ for her target identity id∗, which consists of encryp-

tions of secret key bits.

D.1.3 Single-Point Trapdoor Puncturability

The next requirement we place on a leveled IBFHE to work with our compiler is called

single-point trapdoor puncturability. Intuitively, this means that there is a way to “punc-

ture” the master secret key (aka trapdoor) T to yield a proper subset T ′ ⊂ T that is

missing information needed to derive a secret key for a given identity id∗. Furthermore,

for all other identities id 6= id∗, the punctured trapdoor contains enough information

to efficiently derive the same secret key for id as one would derive with the original

trapdoor T , assuming we are given the same randomness. A formal definition will help

to elucidate this notion.

Definition D.1.4. An IBE scheme E is single-point trapdoor-puncturable if there exists

PPT algorithms TrapPuncture and SimKeyGen with

• TrapPuncture(T, id∗): On input trapdoor T and identity id∗, output a “punctured

trapdoor” T ′ ⊂ T with respect to id∗.

• SimKeyGen(T ′, id): On input a “punctured trapdoor” T ′ with respect to some iden-

tity id∗, and an identity id, output a secret key for id if id 6= id∗, and ⊥ otherwise.
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and these algorithms satisfy the following conditions for any (PP, T ) ← E .Setup(1λ),

id∗ ∈ I and T ′ ← TrapPuncture(T, id∗) ⊂ T :

E .KeyGen(T, id) = SimKeyGen(T ′, id) ∀id ∈ I \ {id∗}. (D.1.3)

D.1.4 Our Compiler

Let E be a leveled IBFHE scheme. The required properties that E must satisfy for

compatibility with our compiler are:

Property 1: (Weakly-Bootstrappable) E is weakly-bootstrappable i.e. there ex-

ists a pair of PPT algorithms (WGenBootstrapKey,Bootstrap) satisfying Definition

D.1.3.

Property 2: (Single-Point Trapdoor-Puncturable) E is single-point trapdoor-puncturable

i.e. there exists a pair of PPT algorithms (TrapPuncture, SimKeyGen) satisfying

Definition D.1.4.

Property 3: (Indistinguishability given punctured trapdoor) For all id ∈ I and

m ∈M: for every skid∗ ← E .KeyGen(T, id∗), and bkid∗ ←WGenBootstrapKey(PP, skid∗),

the distributions

{(PP, T ′, bkid∗ , E .E .Encrypt(PP, id∗,m)} ≈
C
{(PP, T ′, bkid∗ , E .E .Encrypt(PP, id∗,m′)) : m′

$←−M}

are computationally indistinguishable.

There are concrete schemes that almost meet all three properties. One such exam-

ple is the leveled IBFHE from Appendix A of [98]. This scheme admits algorithms

(TrapPuncture, SimKeyGen) that satisfy a relaxation of Equation D.1.3 in Definition

D.1.4, namely the requirement of equality is relaxed to statistical indistinguishability;

more precisely it holds that

E .KeyGen(T, id) ≈
S
SimKeyGen(T ′, id) ∀id ∈ I \ {id∗}
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for any id ∈ I. However, we have been unable to find a leveled IBFHE scheme (from

the GSW compiler) that meets the stronger condition of Equation D.1.3.

Note that it is only necessary that SimKeyGen run in polynomial time - the essential

challenge is to derive some “canonical” secret key for an identity given less trapdoor

information (but the same randomness).

D.1.4.1 Formal Description

We now proceed with a formal description of a bootstrappable scheme Ê1 that is con-

structed using a scheme E satisfying the above properties. Let (WGenBootstrapKey,Bootstrap)

be a pair of PPT algorithms meeting Property 1.

Consider the following program FGenBK to generate a bootstrapping key:

Program FGenBK(id) :

1. Compute r1 ‖ r2 ← PRF.Eval(K, id).

2. Compute skid ← KeyGen(T, id; r1).

3. Output WGenBootstrapKey(PPE , skid; r2).

The scheme Ê1 includes an obfuscation of this program (with key K and trapdoor T )

for the purpose of bootstrapping:

• Ê1.Setup(1λ): Set (PPE , T ) ← E .Setup(1λ). Compute K ← PRF.Key(1λ). Com-

pute β ← iO(FGenBK). Output (PP := (PPE , β),MSK := T ).

• Ê1.KeyGen = E .KeyGen; Ê1.Encrypt = E .Encrypt; Ê1.Decrypt = E .Decrypt.

• Ê1.Bootstrap(PP, id, c): Parse PP as (PPE , β). Set bkid ← β(id). Output Bootstrap(PPE , bkid, c).

The main idea is that Ê1 includes an obfuscation β ← iO(FGenBK) in its public parameters

so an evaluator can derive a bootstrapping key bkid for a given identity id and then invoke

Bootstrap.
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Theorem D.1.1. Assuming indistinguishability obfuscation, one-way functions, Ê1 is

IND-sID-CPA secure if E satisfies Property 1 - Property 3.

Proof. We prove the theorem via a hybrid argument.

Game 0: This is the real system.

Game 1: This is the same as Game 0 except for the following changes. Suppose the

adversary chooses id∗ as the identity to attack. Compute r1 ‖ r2 ← PRF.Eval(K, id∗) and

compute bkid∗ ← WGenBootstrapKey(PPE , skid∗ ; r2) where skid∗ ← KeyGen(T, id∗; r1).

Make the following changes to FGenBK, which we call F ′GenBK, and set β ← iO(F ′GenBK)

1. if id = id∗, then output bkid∗ .

2. Else: Run Step 1 - 3 of FGenBK.

Observe that FGenBK is identical to F ′GenBK since bkid∗ is computed above in the same

manner as FGenBK. The games are indistinguishable due to the security of indistinguisha-

bility obfuscation.

Game 2 This is the same as Game 1 except with the following changes. Compute a

punctured PRF key K ′ ← PRF.Puncture(K, id∗) that is defined for all strings except the

input string id∗, where id∗ is the “target” identity chosen by the adversary. Replace all

occurrences of K in F ′GenBK with K ′. We call the modified function F ′′GenBK.

Observe that F ′GenBK = F ′′GenBK because PRF.Eval(K, id) = PRF.Eval(k′, id) for all id 6=

id∗. Therefore, the games are indistinguishable due to the security of indistinguishability

obfuscation.

Game 3: This is the same as Game 2 except that we change how bkid∗ is computed.

We do this indirectly by changing how r1 ‖ r2 ← PRF.Eval(K, id∗) is computed instead.

More precisely, we choose a uniformly random string r′1 ‖ r′2
$←− {0, 1}m where m is the

length of the pseudorandom outputs of PRF.Eval i.e. m = |PRF.Eval(K, id∗)|.

By the security of the puncturable PRF, we have that

{(K ′, id∗,PRF.Eval(K, id∗)} ≈
C
{(K ′, id∗, r) : r

$←− {0, 1}m)}.
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It follows that Game 2 and Game 3 are computationally indistinguishable.

Game 4: This is the same as Game 3 except that we make the following changes.

We compute a punctured trapdoor T ′ ⊂ T using the TrapPuncture algorithm (which

exists by Property 2) i.e. T ′ ← TrapPuncture(T, id∗). We answer secret key queries with

SimKeyGen(T ′, ·). The games cannot be distinguished by an adversary as a result of

Equation D.1.3 in Definition D.1.4 (single-point trapdoor puncturability).

Game 5: The only change in this game is that we set β ← iO(F ′′′GenBK) where F ′′′GenBK is

the same as F ′′GenBK except skid is computed as

skid ← SimKeyGen(T ′, id; r1).

As a result of Equation D.1.3 in Definition D.1.4 (single-point trapdoor puncturabil-

ity), we have that F ′′′GenBK = F ′′GenBK and hence their obfuscations are indistinguishable

to a PPT adversary by the security of indistinguishability obfuscation.

Game 6: Note that Game 5 removes all references to T . In this game, we produce

the challenge ciphertext given to the adversary as an encryption of a uniformly random

message m′
$←−M. The adversary has a zero advantage in this game.

An efficient distinguisher D that can distinguish between Game 5 and Game 6 can

be used to violate Property 3. Let b be the challenger’s random bit. Let m0 and m1

be the messages chosen by the adversary. Given a challenge instance of Property 3

of the form (PP, T ′, bkid∗ , c
∗) where id∗ is the adversary’s target identity, and c∗ is an

encryption of either mb or a uniformly random element inM. Note that PP, T ′ and bkid∗

are distributed identically to both Game 5 and Game 6. Hence, we can construct an

algorithm to perfectly simulate D’s view, and give c∗ to D as the challenge ciphertext. If

c∗ encryptsmb, Game 5 is perfectly simulated; otherwise if c∗ encrypts a random message,

Game 6 is perfectly simulated. It follows that a non-negligible advantage distinguishing

between Game 5 and Game 6 implies a non-negligible advantage distinguishing the LHS

and RHS distributions of Property 3.

Note that the construction Ê∗ from Section 7.2 satisfies Property 1 - Property 3.
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We now discuss the failure of single-point trapdoor-punturability in current LWE-

based leveled IBFHE schemes.

D.1.4.2 Failure of single-point trapdoor-puncturability in LWE-based IBFHE

schemes

All concrete trapdoor-puncturable weakly-bootstrappable IBFHE constructions are based

on LWE†. More precisely, they are transformations via the GSW compiler [98] of LWE-

based IBEs built from the preimage sampleable functions from [97] and the basis ex-

tension technique introduced in [56]. These underlying IBEs include the Binary Tree

Encoding HIBE from [56] and the IBE from [109], and exclude the schemes from [7,8,97]

since these schemes are not trapdoor-puncturable in the sense captured by Definition

D.1.4.

We can classify all LWE-based schemes we are aware of that satisfy Definition D.1.4

in the following way, Consider an identity space I = {0, 1}` for some fixed integer `.

The public parameters in these schemes include matrices A1,0,A1,1, . . . ,A`,0,A`,1. An

encryption of a message under an identity id = id1 . . . id` ∈ {0, 1}` is performed as a

dual-Regev [97, 161] encryption with the matrix Aid = A1,id1 ‖ · · · ‖ A1,id` . Consider

the function fAid
(~x) = Aid~x mod q, and let ~u be a public vector. It is a hard problem to

find a “short” preimage of ~u under fAid
. Such a preimage ~e is a secret key for identity id ∈

{0, 1}`. In the real system, the matrices Ai,b for i ∈ [`], b ∈ {0, 1} are generated together

with trapdoors Ti,b using a trapdoor generation algorithm such as that from [142]. So

we have T = {Ti,b}i∈[`],b∈{0,1}. Owing to basis extension techniques, a “short” preimage

in f−1
Aid

(~u) can be sampled given only a single Tj,idj for some j ∈ [`]. It follows that

for a target identity id∗, the punctured trapdoor is T ′ = {Ti,1−id∗i }i∈[`] ⊂ T . However,

although any trapdoor can be used to sample statistically close “short” preimages, we are

not aware of any method for these trapdoors to find the same preimage in polynomial

time, even when the same randomness is used. As such, there is no known efficient

†With the exception of the scheme from Section 7.2 based on punctured programming.
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simulator SimKeyGen that can satisfy Equation D.1.3.

D.2 Alternative Approach: Using an obfuscated program

for bootstrapping

Consider the following program FBootstrap that performs the bootstrapping operation:

Program FBootstrap(id, c) :

1. Compute r1 ‖ r2 ← PRF.Eval(K, id).

2. Compute r3 ← PRF.Eval(K, id ‖ c).

3. Compute skid ← KeyGen(T, id; r1).

4. Compute bkid ←

WGenBootstrapKey(PPE , skid; r2).

5. Output Bootstrap(PPE , bkid, c; r3).

We define another scheme Ê2 that is defined in the same way as Ê1 with the following

changes:

1. An obfuscation β ← iO(FBootstrap) is generated in the setup algorithm and included

in the public parameters.

2. The bootstrapping algorithm Ê2.Bootstrap, on input identity id and ciphertext c,

simply becomes equivalent to computing β(id, c) .

Once again the proof strategy proceeds in the same manner as the previous approach.

When we move from T to T ′, it becomes necessary to ensure that on input an identity

id 6= id∗ to FBootstrap, performing bootstrapping with a bootstrapping key based on a

different underlying secret key (i.e. one generated with T ′ instead of T ) can produce an

identical ciphertext to the ciphertext outputted by the original FBootstrap above. More
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precisely, what is needed here is an algorithm SimBootstrap such that for any id ∈

I \ {id∗}, skid ← KeyGen(T, id; r1), bkid ←WGenBootstrapKey(PPE , skid; r2), randomness

r1, r2, r3, and ciphertext c ∈ C, it holds that

Bootstrap(PPE , bkid, c; r3) = SimBootstrap(PPE , T
′, id, c, r1, r2, r3). (D.2.1)

The barrier to realizing such an algorithm SimBootstrap for presently-known IBFHEs

hinges on the fact that a ciphertext c∗ obtained from a homomorphic evaluation of a

circuit C is dependent on the plaintext inputs to C, even leaving aside the output of

C that is encrypted by c∗. Thus, homomorphically evaluating the decryption circuit,

as in bootstrapping, with encryptions of two different secret keys (i.e. two different

bootstrapping keys) results in two different resultant ciphertexts. However, it is non-

trivial to “wipe” from c∗ the unique trace left by a secret key skid without access to

skid.

Note that if E is single-point trapdoor-puncturable (i.e. it satisfies Equation D.1.3),

then it is easy to construct an algorithm SimBootstrap that satisfies D.2.1. Such a

SimBootstrap would use SimKeyGen with T ′ and r1 to generate skid, then skid and r2

to generate bkid. Hence, single-point trapdoor-puncturability implies security of both

approaches. However due to the fact that FBootstrap subsumes FGenBK, the additional

complexity of FBootstrap is extraneous for a single-point trapdoor-puncturable E , since

the process of bootstrapping itself can be more efficiently performed directly by the

evaluator. As a result, Approach 1 is preferable for a single-point trapdoor-puncturable

scheme.
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Appendix E

Multi-Encryptor Setting

In the multi-encryptor setting, there is a bound N placed on the number of independent

senders. Each sender may contribute an input of unbounded size for evaluation. The size

of an evaluated ciphertext is allowed to depend on n ≤ N , i.e the number of indepen-

dent senders whose inputs were used in the evaluation. The syntax of Multi-Encryptor

Attribute Based Homomorphic Encryption (ME-ABHE) includes an algorithm GenKey

that a sender uses to generate a public key pk. Then she uses pk in the encryption

algorithm to encrypt all her input bits. To avoid confusion with the key extraction algo-

rithm KeyGen, we re-name it to Extract in this section. A formal definition of ME-ABHE

follows.

Definition E.0.1. A (Key-Policy) Multi-Encryptor Attribute-Based Homomorphic En-

cryption (ME-ABHE) scheme E(N,K ) for an integer N > 0 and an integer K ∈ [N ] is

defined with respect to a message spaceM, an attribute space A, a class of access policies

F ⊆ A → {0, 1}, and a class of circuits C ⊆ M∗ → M. An ME-ABHE scheme is a

tuple of PPT algorithms (Setup,Extract,GenKey,Encrypt,Decrypt,Eval) where Setup and

Extract (aka KeyGen) are defined equivalently to KP-ABE. We denote by C the ciphertext

space. The other algorithms GenKey, Encrypt, Decrypt and Eval are defined as follows:

• GenKey(PP, a): On input public parameters PP and an attribute a ∈ A, generate
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and output a public key pka for the attribute a.

• Encrypt(PP, pka, µ): On input public parameters PP, a public key pka for attribute

a, and a message µ ∈M, output an encryption c of µ under attribute a.

• Decrypt(〈skf1 , . . . , skfk 〉, c): On input a sequence of k ≤ K secret keys for policies

f1, . . . , fk ∈ F and a ciphertext c, output a plaintext µ′ ∈ M iff every attribute

associated with c is satisfied by at least one of the fi; output ⊥ otherwise.

• Eval(PP, C, c1, . . . , c`): On input public parameters PP, a circuit C ∈ C and ci-

phertexts c1, . . . , c` ∈ C, output an evaluated ciphertext c′ ∈ C.

More precisely, Eval is required to satisfy the following properties:

• We define the function attr that given a public key pk returns the attribute asso-

ciated with pk. Over all choices of (PP,MSK) ← Setup(1λ), C : M` → M ∈ C,

a1, . . . , an with n ≤ N , pkaj ← GenKey(PP, aj) for j ∈ [n], µ1, . . . , µ` ∈ M,

pk1, . . . , pk` ∈ {pka1 , . . . , pkan} with |{pk1, . . . , pk`}| = n, ci ← Encrypt(PP, pki, µi)

for i ∈ [`], and c′ ← Eval(PP, C, c1, . . . , c`):

– Correctness

Decrypt(〈skf1 , . . . , skfk 〉, c
′) = C(µ1, . . . , µ`) iff ∀i ∈ [n] ∃j ∈ [k ] fj(ai) = 1

(E.0.1)

where ai = attr(pki), for any k ∈ [K ], any f1, . . . , fk ∈ F, and any skfj ←

KeyGen(MSK, fj) for j ∈ [k ].

– Compactness There exists a fixed polynomial s(·, ·) for the scheme such that

|c′| ≤ s(λ, n). (E.0.2)

The complexity of all algorithms may depend on N .
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We present a construction of ME-ABHE. Our construction relies on multi-key fully

homomorphic encryption (FHE), attribute based encryption (ABE) and a pseudorandom

function (PRF).

E.1 Our Construction

E.1.1 Prerequisites

Let EMKFHE
(N) = (EMKFHE.Gen, EMKFHE.Encrypt, EMKFHE.Decrypt, EMKFHE.Eval) be a mul-

tikey FHE scheme that tolerates evaluation with N independent keys. For an overview

of the syntax of multikey FHE, see Chapter 5, Section 5.0.1.1. We assume that EABE
has message space MEMKFHE

= {0, 1}. Our scheme has message space M ,MEABE .

Let EABE = (EABE.Setup, EABE.KeyGen, EABE.Encrypt, EABE.Decrypt be an ABE scheme

with message spaceMEABE , attribute space AEABE and class of access policies FEABE . Our

scheme has attribute space A , AEABE and class of access policies F , FEABE .

Let EPRF = (EPRF.Key, EPRF.Eval) be a pseudorandom function (PRF) with polyno-

mials kEPRF(·), mEPRF(·) and nEPRF(·) such that EPRF.Key, on input a security parameter

λ, outputs a key in {0, 1}kEPRF (λ), and EPRF.Eval, on input a key in {0, 1}kEPRF (λ) and an

input string in {0, 1}mEPRF (λ), outputs a string in {0, 1}nEPRF (λ). When the security pa-

rameter λ is understood, we abbreviate the above parameters as kEPRF , mEPRF and nEPRF

respectively.

Without loss of generality, we assume that MEABE is large enough to contain a PRF

key K ∈ {0, 1}kEPRF .

We now present our construction, which we call meABFHE.

E.1.2 Setup

On input a security parameter λ and a maximum number of independent encryptors N ,

the following steps are performed:
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1. Generate (PPEABE ,MSKEABE)← EABE.Setup(1λ).

2. Output (PP := (PPEABE , λ,N),MSK := (PP,MSKEABE)).

E.1.3 Secret Key Extraction (Extract)

The extraction algorithm Extract is defined as follows. Given the master secret key

MSK := (PP,MSKEABE) and a policy f ∈ F, a secret key skf for f is generated as

skf ← EABE.KeyGen(MSKEABE , f). The secret key SKf := (PP, skf ) is issued to the user.

E.1.4 Key Generation (GenKey)

On input public parameters PP := (PPEABE , λ,N) and an attribute a ∈ A, run the

following steps. Generate a PRF key K ← EPRF.Key(1λ). Encrypt K with the ABE

scheme EABE using attribute a ∈ A; that is, compute ψ ← EABE.Encrypt(PPEABE , a,K).

Consider the following subroutine DeriveKey:

• DeriveKey(λ,K): Let t be the number of random bits used by EMKFHE.Gen. Com-

pute v ← dt/nEPRFe and generate randomness r ← EPRF.Eval(K, 1) ‖ · · · ‖ EPRF.Eval(K, v) ∈

{0, 1}v·nEPRF . Note that t ≤ v · nEPRF and thus r is sufficient randomness for

EMKFHE.Gen. Output (pkEMKFHE
, skEMKFHE

, vkEMKFHE
)← EMKFHE.Gen(1λ; r).

Run (pkEMKFHE
, skEMKFHE

, vkEMKFHE
)← DeriveKey(λ,K). Output pk← (ψ, pkEMKFHE

, vkEMKFHE
).

E.1.4.1 Encryption

On input public parameters PP := (PPEABE , λ,N), a public key pk and a message µ ∈M,

run the following steps. Parse pk as (ψ, pkEMKFHE
, vkEMKFHE

). Encrypt µ with EMKFHE; that

is, compute c← EMKFHE.Encrypt(pkEMKFHE
, µ). Output CT := (〈(ψ, vkEMKFHE

)〉, c).

E.1.4.2 Evaluation

On input public parameters PP := (PPEABE , λ,N), a circuit C ∈ C, and ciphertexts

CT1, . . . ,CT`, the evaluator performs the following steps. Firstly, the ciphertexts are as-
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sumed to be “fresh” ciphertexts generated with the encryption algorithm. In other words,

the evaluator can parse CTi as (〈(ψi, vki)〉, ci) for every i ∈ [`]. Then we compute the

number of distinct senders n ← |{(ψ1, vk1), . . . , (ψ`, vk`)}| ≤ N (i.e. the number of dis-

tinct public keys used to generate the collection of ciphertexts). This is because each pub-

lic key is associated with a unique pair (ψi, vki). For ease of exposition, we label these n

unique pairs as (ψ̂1, v̂k1), . . . , (ψ̂n, v̂kn). Compute c′ ← EMKFHE.Eval(C, (c1, vk1), . . . , (c`, vk`))

and output CT′ := (〈(ψ̂1, v̂k1), . . . , (ψ̂n, v̂kn)〉, c′). If the scheme is only required to be

1-hop homomorphic. then the evaluation keys can be removed from CT′. This is as-

sumed to be the case for a final evaluated ciphertext, which is what is considered when

we measure the size of an evaluated ciphertext.

E.1.4.3 Decryption

To decrypt a ciphertext CT with a sequence of secret keys 〈SKf1 := (PP, skf1), . . . ,SKfk :=

(PP, skfk )〉 for respective policies f1, . . . , fk ∈ F, a decryptor performs the following steps.

Parse CT as (〈(ψ1, vk1) . . . , (ψn, vkn)〉, c′). Output ⊥ and abort if n > N . For every

i ∈ [n], let ai be the attribute associated with ψi. For every i ∈ [n], assert there

exists an f ∈ {f1, . . . , fk } with f(ai) = 1; choose an arbitrary such f and label it with

fi. Otherwise output ⊥ ans abort. Compute Ki ← EABE.Decrypt(skfi , ψi). Compute

(pk
(i)
EMKFHE

, sk
(i)
EMKFHE

, vk
(i)
EMKFHE

)← DeriveKey(λ,Ki).

Output µ′ ← EMKFHE.Decrypt(sk
(1)
EMKFHE

, . . . , sk
(n)
EMKFHE

, c′).

E.2 Parameters

In practice, each sender, whose input is γ bits, need only send the structure (ψ, vk, c1, . . . , cγ),

where ψ is an EABE ciphertext, vk is an EMKFHE evaluation key and each ci for i ∈ [γ] is a

EMKFHE ciphertext. Of course γ can be of any size. We could avoid the usage of a PRF

in the key generation algorithm by computing ψ as an ABE encryption of a secret key

for EMKFHE, as opposed to an encryption of a PRF key. However, as we will see, the size
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of a secret key for EMKFHE is large compared to that of a PRF key. Furthermore, the

size of the latter is constant for a given security level λ, whereas the size of the former

grows with the desired bound N on the number of senders.

Let R = ZZ[x]/φ(x) be a polynomial ring with φ(x) = xd + 1 and d a power of 2.

When multiplying any two elements a(x), b(x) ∈ R, the (`∞) norm of their product grows

by at most a factor δ, called the “expansion factor”. For the special case of φ(x) = xd+1

where d is a power of 2, we have δ = n [44]. Using the formula in Section 3.3 of [131]

(Equation 2 in that paper), we can obtain the maximum value maxlog2 q of log2 q to

ensure 80 bits of security; we calculate this as maxlog2 q ≈ 48000.

To support a circuit depth of L = 50 and a maximum number of senders N = 60,

we need to set the dimension parameter to d = 220. The theoretical noise limit for this

parameter is above the maximum allowed q. Fortunately, Lepoint and Naehrig [131]

report that it in practice, the noise grows more slowly than the theoretical limit. In

their case, the found that one could reduce q by 33% and still achieve correctness with

high probability. Taking this account, we can set q accordingly. One possible setting

that satisfies all our criteria is q = 46691. With these parameters, a single ciphertext

for the multikey FHE scheme is approximately 5.7 GB. While this is extremely large,

we can avail of hybrid homomorphic encryption i.e. encrypt the plaintexts using a sym-

metric cipher and encrypt the symmetric key with the multikey FHE scheme. In hybrid

homomorphic encryption, the evaluator first homomorphically evaluates the decryption

circuit of the symmetric cipher prior to carrying out the desired homomorphic computa-

tion. For example, Lepoint and Naehrig evaluate minimalist block cipher SIMON - the

variant with 32 rounds requires 32 levels. Our parameters handle this, leaving 50 - 32 =

18 levels for further evaluation.

242



E.3 Implementation

We extended the implementation of Lepoint and Naehrig [131] to support multiple keys;

in effect, this is an implementation of the multikey FHE scheme of López-Alt, Tromer and

Vaikuntanathan [135]. The implementation uses the library FLINT [80] for arithmetic.

To give the reader an understanding of the present state of affairs for multi-key

homomorphic encryption, we chose to evaluate a useful circuit. As part of our imple-

mentation, we developed a basic “compiler” for a simple functional language we called

“Simple Circuit Description Language” (SCDL). SCDL is a simple language to describe

an arithmetic circuit over some ring. It has two basic operations, addition (+) and

multiplication (*). The language can be interpreted in any ring. For example, when

interpreted in the Boolean field, “+” corresponds to XOR and “*” corresponds to AND.

To illustrate the syntax, below is the definition of the function “equals” that tests the

equality of its two arguments:

constant one = 1

func equal (x , y ) = ( x + y ) + one

The code above first defines the constant “one”. The next line defines the function

“equals” as the XOR of its two arguments XORed with “one”. Similarly we can define

the “or” function:

func or (x , y ) = x + y + ( x∗y )

Now we define a function that determines whether an 8-bit value is greater than another

8-bit value:

func gt (X : 8 , Y : 8) = or (X[ 7 ] ∗ not (Y[ 7 ] ) , \

or (X[ 7 ] ∗ not (Y[ 7 ] ) , \

or ( equal (X[ 7 ] , Y[ 7 ] ) ∗X[ 6 ] ∗ not (Y[ 6 ] ) , \

or ( equal (X[ 7 ] , Y[ 7 ] ) ∗ equal (X[ 6 ] , Y[ 6 ] ) ∗X[ 5 ] ∗ not (Y[ 5 ] ) , \

or ( equal (X[ 7 ] , Y[ 7 ] ) ∗ equal (X[ 6 ] , Y[ 6 ] ) ∗ equal (X[ 5 ] , Y[ 5 ] ) ∗ \
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X[ 4 ] ∗ not (Y[ 4 ] ) , \

or ( equal (X[ 7 ] , Y[ 7 ] ) ∗ equal (X[ 6 ] , Y[ 6 ] ) ∗ equal (X[ 5 ] , Y[ 5 ] ) ∗ \

equal (X[ 4 ] , Y[ 4 ] ) ∗X[ 3 ] ∗ not (Y[ 3 ] ) , \

or ( equal (X[ 7 ] , Y[ 7 ] ) ∗ equal (X[ 6 ] , Y[ 6 ] ) ∗ equal (X[ 5 ] , Y[ 5 ] ) ∗ \

equal (X[ 4 ] , Y[ 4 ] ) ∗ equal (X[ 3 ] , Y[ 3 ] ) ∗X[ 2 ] ∗ not (Y[ 2 ] ) , \

or ( equal (X[ 7 ] , Y[ 7 ] ) ∗ equal (X[ 6 ] , Y[ 6 ] ) ∗ equal (X[ 5 ] , Y[ 5 ] ) ∗ \

equal (X[ 4 ] , Y[ 4 ] ) ∗ equal (X[ 3 ] , Y[ 3 ] ) ∗ equal (X[ 2 ] , Y[ 2 ] ) ∗ \

X[ 1 ] ∗ not (Y[ 1 ] ) , \

equal (X[ 7 ] , Y[ 7 ] ) ∗ equal (X[ 6 ] , Y[ 6 ] ) ∗ equal (X[ 5 ] , Y[ 5 ] ) ∗ \

equal (X[ 4 ] , Y[ 4 ] ) ∗ equal (X[ 3 ] , Y[ 3 ] ) ∗ equal (X[ 2 ] , Y[ 2 ] ) ∗ \

equal (X[ 1 ] , Y[ 1 ] ) ∗X[ 0 ] ∗ not (Y[ 0 ] ) ) ) ) ) ) ) ) )

We compiled the above function into a circuit representation via our “compiler” and

we homomorphically evaluated the circuit using our implementation of multi-key FHE.

Note that the multiplicative depth of this circuit is 3. The parameters we chose were

as follows: d = 512, log2 q = 570. Furthermore, the standard deviation of the noise

distribution was set to 8. The private keys were randomly sampled from {−1, 0,+1}d.

Empirically we determined that a maximum of 4 independent keys could be tolerated

when evaluating the above circuit.

The code was compiled with optimization flag ’-03’ along with OpenMP using g++

version 4.7.2. The experiments were executed on a laptop with 4 GB of RAM and an

Intel Core i5-3340M CPU clocked at 2.70 GHz. In each experiment, a number was keys

was chosen to be used in the range 1 to 4. In other words, in the k-th experiment for

k ∈ [4], k keys were used. Each input plaintext was assigned to one of the k keys. This

was done in a round-robin fashion, where adjacent inputs were assigned to the next key

in sequence. Each input plaintext was then encrypted with the key it was assigned to.

This spreads the inputs among the keys. Each experiment involved evaluating the above

circuit (i.e. the greater-than circuit) with the ciphertexts generated as described. We ran
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Table E.1: Run times and noise levels (log2) for evaluation of the 8-bit greater-than

circuit with different keys.

Number of keys Run time - Mean (s) Noise level (log2)

1 129.08 274

2 207.85 380.2

3 285.01 560.9

4 354.06 566.5

each experiment 10 times and obtained the mean run time for the evaluation along with

the mean noise level in the resulting ciphertext. More precisely, we take the log of the

noise level, which with our parameters takes on a value between 0 and log2 q − 1 = 569

bits. As we can see from Table E.1, 4 keys is the most we can tolerate since the noise

level is almost at the threshold, which is log2 q−1 = 569. The table also tells us that the

average run time for 4 keys is ≈ 2.74 times that for one key, which shows the overhead of

additional keys. It must be noted that assigning the inputs to different keys in a round-

robin manner (as we have done) results in the worst performance because the gates at

every level involve multiple keys and are thus more costly to evaluate. In practice, one

might expect inputs from different keys to be combined with each other at a later stage

in the circuit, which would lead to better performance.

The implementation we extended of Lepoint and Naehrig [131] uses the library

FLINT [80] for arithmetic, which exploits parallelization using OpenMP. To parallelize

further, one could distribute work to different worker nodes.
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